Меню

Что такое ток смещения определение



§25. Ток смещения и система уравнений Максвелла

Мы установили, что изменяющееся магнитное поле порождает изменяющееся электрическое поле, которое в свою очередь порождает изменяющееся магнитное поле и т. д. В результате образуются сцепленные между собой электрическое и магнитное поля, составляющие электромагнитную волну. Она “отрывается” от зарядов и токов, которые ее породи­ли. Способ существования электромагнитной волны делает невозможным ее неподвижность в пространстве и постоянство напряженности во времени.

Постоянный ток не протекает в цепи с конденсатором, а в случае переменного напряжения в цепи ток протекает через конденсатор. Для постоянного тока конденсатор – разрыв в цепи, а для переменного этого разрыва нет. Поэтому необходимо заключить, что между обкладками конденсатора происходит некоторый процесс, который как бы замыкает ток проводимости. Этот процесс между обкладками конденсатора был назван током смещения. Напряженность поля между обкладками конденсатора . Из граничного условия для вектора следует, что диэлектрическое смещение между обкладками , а сила тока в цепи равна . Тогда

, (25.1)

А значит процессом, замыкающим ток проводимости в цепи, является изменение электрического смещения во времени. Плотность тока

. (25.2)

Существование тока смещения было постулировано Максвеллом в 1864 г. и затем экспериментально подтверждено другими учеными.

Почему скорость изменения вектора смещения называется плотностью тока? Само по себе математическое равенство величины , характеризующей процесс между обкладками конденсатора, т. е. равенство двух величин, относящихся к разным областям пространства и имеющим различную физическую природу, не содержит в себе, вообще говоря, какого-то физического закона. Поэтому называть ”током” можно только формально. Для того чтобы придать этому названию физический смысл, необходимо доказать, что обладает наиболее характерными свойствами тока, хотя и не представляет движения электрических зарядов, подобного току проводимости. Главным свойством тока проводимости является его способность порождать магнитное поле. Поэтому решающим является вопрос о том, порождает ли ток смещения магнитное поле так же, как его порождают ток проводимости, или, более точно, порождает ли величина (25.2) такое же магнитное поле, как равная ей объемная плотность тока проводимости? Максвелл дал утвердительный ответ на этот вопрос. Однако наиболее ярким подтверждением порождения магнитного поля током смещения является существование электромагнитных волн. Если бы ток смещения не создавал магнитного поля, то не могли бы существовать электромагнитные волны.

Уравнение Максвелла с током смещения.

Порождение магнитного поля токами проводимости описывается уравнением

(25.3)

Учитывая порождение поля током смещения, необходимо обобщить это уравнение в виде

(25.4)

Тогда, принимая во внимание (25.2), окончательно получаем уравнение

, (25.5)

Являющееся одним из уравнений Максвелла.

Система уравнений Максвелла.

Полученная в результате обобщения экспериментальных данных, эта система имеет вид:

, (25.6)

Эти уравнения называются полевыми и справедливы при описании всех макроскопических электромагнитных явлений. Учет свойств среды достигается уравнениями

, (25.7)

Называемыми обычно Материальными уравнениями среды. Среды линейны, если и нелинейны если . Материальные уравнения, как правило, имеют вид функционалов.

Рассмотрим физический смысл уравнений.

Уравнение I выражает закон, по которому магнитное поле порождается токами проводимости и смещения, являющимися двумя возможными источниками магнитного поля. Уравнение II выражает закон электромагнитной индукции и указывает на изменяющееся магнитное поле как на один из возможных источников, порождающих электрическое поле. Вторым источником электрического поля являются электрические заряды (уравнение IV). Уравнение III говорит о том, что в природе нет магнитных зарядов.

Полнота и совместность системы. Единственность решения.

В случае линейной среды можно исключить из полевых уравнений (25.6) величины в результате чего они становятся уравнениями относительно векторов и , т. е. относительно шести неизвестных (у каждого вектора по 3 проекции). С другой стороны число скалярных уравнений в (25.6) равно восьми. Получается, что система состоит из 8 уравнений для 6 неизвестных. Однако в действительности система не переполнена. Это обусловлено тем, что уравнения I и IV, а также II и III имеют одинаковые дифференциальные следствия и поэтому связаны между собой.

Чтобы в этом убедиться возьмем от уравнения II и производную по времени от уравнения III. Получим:

,

Т. е. получили одинаковые дифференциальные следствия. Аналогично возьмем от уравнения I:

.

С из уравнения непрерывности следует, что . Тогда

или . Из IV следует, что

Наличие двух дифференциальных связей и делает систему уравнений Максвелла совместной. Более подробный анализ показывает, что система является полной, а ее решение однозначно при заданных начальных и граничных условиях.

Доказательство единственности решения в общих чертах сводится к следующему. Если имеется два различных решения, то их разность вследствие линейности системы тоже является решением, но при нулевых зарядах и токах и нулевых начальных и граничных условиях. Отсюда, пользуясь выражением для энергии электромагнитного поля и законом сохранения энергии заключаем, что разность решений тождественно равна нулю, т. е. решения одинаковы. Тем самым единственность решения уравнений Максвелла доказана.

Источник

Ток смещения в вакууме

В [1] даётся такое определение тока смещения в вакууме: «Максвелл предложил называть также электрическим током изменение во времени электрического поля в вакууме». Более правильная, на мой взгляд, формулировка: воображаемый ток, обуслов-ленный изменением во времени электрического поля в вакууме.
При зарядке и разрядке конденсатора через сопротивление, электрический ток, протекая по соединительным проводам, создаёт вокруг них магнитное поле – магнитную «шубу», доходящую до пластин. Между ними в вакууме никаких зарядов нет, а, значит и никакого тока в обычном смысле быть не может. Однако, есть изменяющееся электрическое поле, Рис., (1), где D – модуль вектора электрического смещения, S – площадь пластины конденсатора, Q – заряд конденсатора. Дифференцируя (1) по времени получаем формулу Рис., (2), где i0пров – плотность тока проводимости.
Максвелл предложил, по сути, считать, что изменяющееся электрическое поле конденсатора порождает некий ток (ток смещения), который, в свою очередь, порождает в окружающем пространстве переменное магнитное поле. Цепь с конденсатором стала замкнутой, а цепочка: E –> iсмещ –> B –> E . легла в основу механизма распространения электромагнитных волн.
Свойства тока смещения, приписываемые ему Максвеллом или вытекающие из определения:
— не вызывает тепловых потерь;
— существует только в переменных полях;
— порождает магнитное поле.
Если ток смещения в вакууме и в самом деле порождает магнитное поле, как это утверждал Максвелл, то есть смысл попытаться это поле обнаружить. Вот результат одной из попыток [2]: «. проведенные мною опыты показывают отсутствие, как магнитного поля, так и самого тока смещения в вакууме. Это невероятно, но очевидно! Вывод об отсутствии магнитного поля тока смещения в вакууме, возможно, и проти-воречит некоторым положениям современной теории, но вовсе не противоречит основным законам природы».
Однако В. Задорожный, к сожалению, не первооткрыватель. Во II томе Берклиевского курса физики [3] приводится любопытный анализ тока смещения в вакуумном конденсаторе – он не создаёт магнитное поле. Напряженность магнитного поля в любой точке пространства внутри и вне конденсатора определяется суперпозицией полей от «полутоков» проводимости – втекающего в одну пластину конденсатора и вытекающего из другой.
Сторонники непорочности «системы уравнений Максвелла» утверждают, что способность электрического поля создавать в вакууме ток смещения без участия зарядов – релятивистский эффект.
Учитывая исключительную важность таких опытов, следовало бы их многократно повторить, используя разные методики и аппаратуру. Однако, на мой взгляд, найти такое поле не удастся, ибо оно – фикция [4]. «Сколько ни квантуй, всё равно получишь . ».

Читайте также:  Индукционный ток в соленоиде возникает только при

Источники информации
1. Купалян С.Д. Теоретические основы электротехники. Ч. 3. – М.: Энергия, 1970.
– 248 с.
2. Ток смещения и его магнитное поле.
3. Берклеевский курс физики: Для физ. спец. вузов в 5 т. Т.2: Парселл Э. Электричество и магнетизм: Пер. с англ. / Под ред. А.И.Шальникова, А.О.Вайсенберга. – 3-е изд., испр. – М.: Наука, 1983. – 415 с.
4. Семиков С.А. Баллистическая теория Ритца и картина мироздания.
http://lib.rus.ec/b/271987/read
05.01.2015, 08.01.2015

Смещается, вероятно, вакуум, а магнитное поле создается материей, которая при этом пребывает в хаотическом состоянии. С ув.,

Портал Проза.ру предоставляет авторам возможность свободной публикации своих литературных произведений в сети Интернет на основании пользовательского договора. Все авторские права на произведения принадлежат авторам и охраняются законом. Перепечатка произведений возможна только с согласия его автора, к которому вы можете обратиться на его авторской странице. Ответственность за тексты произведений авторы несут самостоятельно на основании правил публикации и законодательства Российской Федерации. Данные пользователей обрабатываются на основании Политики обработки персональных данных. Вы также можете посмотреть более подробную информацию о портале и связаться с администрацией.

Ежедневная аудитория портала Проза.ру – порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

© Все права принадлежат авторам, 2000-2021. Портал работает под эгидой Российского союза писателей. 18+

Источник

Что такое ток смещения определение

Мы знаем, что постоянный ток в цепи с конденсатором не течет, переменный — протекает. Сила квазистационарного тока во всех элементах цепи, если они соединяются последовательно, одинакова. В конденсаторе, обкладки которого разделяет диэлектрик, ток проводимости, вызванный перемещением электронов, идти не может. Значит, если ток переменный (присутствует переменное электрическое поле), происходит некоторый процесс, который замыкает ток проводимости без переноса заряда между обкладками конденсатора. Этот процесс называют током смещения.

Любое переменное магнитное поле порождает вихревое электрическое поле. Исследуя разные электромагнитные процессы, Максвелл сделал вывод о том, что существует обратное явление: изменение электрического поля вызывает появление вихревого магнитного поля. Это одно из основных утверждений в теории Максвелла.

Готовые работы на аналогичную тему

Так как магнитное поле — обязательный признак любого тока, Максвелл назвал переменное электрическое поле током смещения. Ток смещения следует отличать от тока проводимости, который вызван движением заряженных частиц (электронов и ионов). Токи смещения появляются только в том случае, если электрическое смещение ($\overrightarrow$) переменно. Объемная плотность тока смещения определяется как:

Именно вследствие этого физическое содержание предположения Максвелла о токах смещения сводится к утверждению о том, что переменные электрические поля — источники переменных магнитных полей.

Следует заметить, что плотность тока смещения определена производной вектора $\overrightarrow$, а не самим вектором.

Читайте также:  Борьба с током утечки

Ток смещения в диэлектрике

По определению вектора электрической индукции ($\overrightarrow$):

где $<\varepsilon >_0$ — электрическая постоянная, $\overrightarrow$ — вектор напряженность, $\overrightarrow

$ — вектор поляризации. Следовательно, ток смещения можно записать как:

где величина $\frac<\partial \overrightarrow

><\partial t>$ — плотность тока поляризации. Токи поляризации — токи, которые вызваны движением связанных зарядов, которые принципиально не отличаются от свободных зарядов. Поэтому нет ни чего странного, что токи поляризации порождают магнитное поле. Принципиальная новизна содержится в утверждении, что вторая часть тока смещения ($<\varepsilon >_0\frac<\partial \overrightarrow><\partial t>$), не связанная с движением зарядов, также порождает магнитное поле. Получается, что в вакууме, любое изменение электрического поля по времени вызывает магнитное поле.

Однако, надо заметить, что сам термин «ток смещения» для диэлектриков имеет какое-то обоснование, так как в них действительно происходит смещение зарядов в атомах и молекулах. Но этот термин применяется и к вакууму, где зарядов нет, значит, нет их смещения.

Полный ток

В том случае, если в проводнике течет переменный ток, то внутри него имеется переменное электрическое поле. Значит, в проводнике существует ток проводимости ($j$) и ток смещения. Магнитное поле проводника определено суммой вышеназванных токов, то есть полным током ($\overrightarrow$):

В зависимости от электропроводности вещества, частоты переменного тока, слагаемые в выражении (4), играют разную роль. В веществах с хорошей проводимостью (например, металлах) и при низких частотах переменного тока плотность тока смещения невелика, тогда как ток проводимости существенен. В таком случае, током смещения пренебрегают, в сравнении с током проводимости. В веществах с высоким сопротивлением (изоляторах) и при больших частотах тока ведущую роль играет ток смещения.

Оба слагаемых в выражении (4) могут иметь одинаковые знаки и противоположные. Следовательно, полный ток может быть и больше и меньше тока проводимости, может даже быть равен нулю.

Значит, в общем случае переменных токов магнитное поле определяется полным током. Если контур разомкнут, то на концах проводника обрывается только ток проводимости. В диэлектрике между концами проводника присутствует ток смещения, который замыкает ток проводимости. Получается, что если под электрическим током понимать полный ток, то в природе все токи замкнуты.

Задание: Плоский конденсатор заряжен и отключен от источника заряда. Он медленно разряжается объемными токами проводимости, которые появляются между обкладками, так как присутствует небольшая электрическая проводимость. Чему равна напряжённость магнитного поля внутри конденсатора? Считать, что краевых эффектов в конденсаторе нет.

Решение:

Допустим, что поверхностная плотность заряда на обкладках равна $\sigma \ и-\sigma .$ В таком случае, модуль вектора электрического смещения ($D$) для плоского конденсатора равен:

Ток смещения можно найти как:

Подставив вместо $D$ правую часть выражения (1.1), имеем:

В соответствии с законом сохранения заряда, можно записать, что:

Полный ток равен:

Для нашего плоского конденсатора, учитывая полученные выражения (1.3), (1.4), имеем:

Ответ: Магнитное поле в конденсаторе равно нулю.

Задание: Допустим, что неограниченную однородную проводящую среду поместили в металлический шар, имеющий заряд $Q$. В этой среде возникнут электрические токи, которые потекут в радиальных направлениях. Покажите, что данная ситуация требует введения тока смещения при описании возникающих полей.

Решение:

Электрические токи, которые текут от (или к ) шару, возбуждают магнитное поле. Определим направление вектора магнитной индукции этого магнитного поля.

Вектор $\overrightarrow$ не имеет радиальной составляющей. Система обдает сферической симметрией. Если бы радиальная составляющая вектора индукции имелась, то она была бы одинаковой для всех точек сферы $S$ (рис.1), концентрической с поверхностью шара, имела направление от центра шара или к его центру. В обоих случаях поток вектора индукции через сферу $S$ был бы не равен нулю, что противоречит уравнению из системы Максвелла:

Значит, вектор индукции магнитного поля должен быть перпендикулярен к радиусу, который проведен из центра шара к рассматриваемой точке. Это также невозможно, так как все направления, перпендикулярные к радиусу, равноправны. Единственная возможность, которая не противоречит симметрии шара, заключается в том, что векторы $\overrightarrow\ и\ \overrightarrow$ всюду равны нулю. Следовательно, равна нулю плотность тока проводимости $\overrightarrow,\ $ что противоречит уравнению:

Для устранения полученного противоречия следует предположить, что магнитные поля порождаются не только токами проводимости. Добавим к току проводимости ток смещения ($I_$), который в нашем случае будет уничтожать возбуждаемое магнитное поле. Его величина определяется из условия:

Ток проводимости, который течет от заряженного шара можно выразить как:

Из выражения (2.3) следует, что:

В соответствии с законом Кулона заряженного проводящего шара, имеем:

\[Q=4\pi r^2D\ \left(2.6\right).\]

Найдем производную по времени от заряда, получим:

Плотность тока смещения при этом будет равна:

Полученное выражение совпадает с определением плотности тока смещения.

Источник

Ток смещения

  • Что такое ток смещения
    • Ток смещения в диэлектрике
    • Полный ток
  • Как найти плотность тока смещения, формула

Что такое ток смещения

Ток смещения или абсорбционный ток — величина, которая прямо пропорциональна скорости изменения электрической индукции.

Каждому переменному магнитному полю свойственно вихревое электрическое поле. Проводя исследования разных электромагнитных процессов, Дж. К. Максвелл определил существование обратного явления, когда электрическое поле, изменяясь, приводит к появлению вихревого магнитного поля.

Читайте также:  Явление поляризации постоянного тока

Данное утверждение является одним из основных в теории Максвелла. Известно, что магнитное поле является признаком любого тока. Основываясь на данном факте, ученый определил переменное электрическое поле, как ток смещения. При измерении он будет отличаться от тока проводимости, который представляет собой следствие движения заряженных частиц в виде электронов и ионов.

Токи смещения можно наблюдать только тогда, когда электрическое смещение \(\vec\) переменно, то есть наблюдают его колебания. Объемную плотность тока в этом случае можно измерить и рассчитать по формуле:

Вывод данного физического содержания теории Максвелла о токах смещения позволяет утверждать, что переменные электрические поля являются источниками переменных магнитных полей. Следует отметить, что для определения плотности тока смещения используют производную вектора \(\vec\)

Ток смещения в диэлектрике

Вектор электрической индукции измеряется по формуле:

Где \(\varepsilon _<0>\) — электрическая постоянная, \(\vec\) — вектор напряженности, \(\vec

\) — вектор поляризации.

Уравнение для тока смещения будет иметь следующий вид:

Где \(\frac>

\) — плотность тока поляризации.

Токи поляризации являются следствием движения связанных заряженных частиц, которые не обладают принципиальными отличиями по сравнению со свободными зарядами. Основываясь на данном факте, можно объяснить порождение магнитного поля токами поляризации. Принципиальной новизной отличается вторая часть уравнения тока смещения:

Данная формула не обладает связью с перемещением заряженных частиц, но также формирует магнитное поле. Можно сделать вывод, что в вакуумной среде любое изменение электрического поля по времени является причиной образования магнитного поля.

Нужно обратить внимание на то, что определение тока смещения для диэлектриков имеет какое-то обоснование, так как в них действительно можно наблюдать смещение зарядов в атомах и молекулах. Но этот термин применяют и к вакууму, в котором отсутствуют заряды, а, следовательно, и их смещение.

Полный ток

При наличии в проводнике переменного тока, внутри него будет образовано переменное электрическое поле. Таким образом, проводник будет вмещать в себе ток проводимости (j) и ток смещения. Магнитное поле проводника рассчитывают, как сумму вышеуказанных токов, то есть полный ток:

Роль данных слагаемых определяется двумя факторами:

  • электропроводность вещества;
  • частота переменного тока.

В зависимости от перечисленных характеристик можно наблюдать следующие процессы:

  1. Вещества с хорошей проводимостью такие, как металлы, при низкой частоте переменного тока: плотность тока смещения обладает небольшой мощностью, в то время как ток проводимости достаточно велик. В данной ситуации током смещения целесообразно пренебречь по сравнению с током проводимости.
  2. В веществах, для которых характерно высокое сопротивление, то есть изоляторах, при токе с большой частотой ведущая роль отведена току смещения. В этом случае в уравнении для общего тока слагаемые могут обладать одинаковыми или противоположными знаками.

Поэтому величина полного тока может быть меньше, либо превышать ток проводимости, а также равняться нулю. Таким образом, в общем случае переменных токов полный ток определяет магнитное поле. При размыкании контура на концах проводника наблюдают обрыв только тока проводимости. В диэлектрике между концами проводника возникает ток смещения, замыкающий ток проводимости. В итоге, из понятия электрического тока, как полного тока, вытекает утверждение, что в природе все токи замкнуты.

Как найти плотность тока смещения, формула

С целью установить количественную связь между изменяющимся электрическим полем и магнитным полем, которое вызвано электрическим, Максвелл ввел в рассмотрение ток смещения. Определение справедливо в случае работы с диэлектриками. В данных веществах заряженные частицы меняют положение по причине воздействия на них электрического поля.

В случае вакуумной среды заряды отсутствуют, хотя магнитное поле существует. То есть термин «тока смещения» не совсем удачный, однако его смыл абсолютно верный. Вывод, который сделал ученый, состоит в том, что любое переменное электрическое поле образует переменное магнитное поле. Токи проводимости в условиях проводника будут замкнуты токами смещения в диэлектрике или в вакууме. Переменным электрическим полем в конденсаторе создается такое же магнитное поле, как если бы между пластинами был ток проводимости, по величине равный току в металлическом проводнике.

Исходя из данного пояснения, можно рассчитать ток смещения. Поверхностная плотность поляризационных зарядов и вектор электрического смещения равны:

\(\sigma =E\varepsilon \varepsilon _<0>\)

\(\vec =E\varepsilon \varepsilon _<0>\)

Величину полного заряда на поверхности диэлектрика, а также на пластинах конденсатора, можно рассчитать по формуле:

Где S — площадь обкладки конденсатора.

Тогда можно записать следующую формулу:

Таким образом, ток смещения является величиной, пропорциональной скорости, с которой изменяется вектор электрического смещения \(\vec\)

Отсюда вытекает определение тока смещения. Плотность тока смещения можно найти по формуле:

Вихревое магнитное поле \(\vec\) образуется в результате протекания тока смещения, связано с направлением вектора \(\frac>

\) правилом правого винта. Относительная диэлектрическая проницаемость среды рассчитывается по формуле:

Где х — диэлектрическая восприимчивость среды.

В таком случае, можно получить уравнение:

\(D=\varepsilon \varepsilon _<0>E=(1+x)\varepsilon _<0>E\)

\(D=\varepsilon _<0>E+\varepsilon _<0>Ex\)

Вектор поляризации равен:

Таким образом, получим равенство:

Плотность тока смещения в вакууме:

Плотность тока поляризации:

Плотность тока обусловлена перемещением зарядов в диэлектрике.

Источник