Меню

Что такое ток смещения конденсатора



ток смещения

Энциклопедический словарь . 2009 .

Смотреть что такое «ток смещения» в других словарях:

Ток смещения — Ток смещения: Ток смещения (электродинамика) величина, пропорциональная быстроте изменения индукции электрического поля. Ток смещения (радиоэлектроника) постоянный анодный (коллекторный) ток, протекающий, когда к управляющему электроду приложено… … Википедия

ток смещения — Совокупность электрического тока смещения в пустоте и электрического тока поляризации, количественно характеризуемая скалярной величиной, равной производной по времени от потока электрического смещения сквозь рассматриваемую поверхность. [ГОСТ Р… … Справочник технического переводчика

ТОК СМЕЩЕНИЯ — величина, пропорциональная скорости изменения переменного электрического поля в диэлектрике или вакууме. Название ток связано с тем, что ток смещения порождает магнитное поле по тому же закону, что и ток проводимости … Большой Энциклопедический словарь

ТОК СМЕЩЕНИЯ — скорость изменения во времени t электрич. индукции D (точнее, величина д/дt(D/4p)). Введен англ. физиком Дж. Максвеллом в его теории эл. магн. поля (см. МАКСВЕЛЛА УРАВНЕНИЯ). Т. с. создаёт магн. поле по тому же закону, что и ток проводимости, т.… … Физическая энциклопедия

ТОК СМЕЩЕНИЯ — физ. величина, пропорциональная скорости изменения напряжённости переменного электрического поля в диэлектрике или вакууме и характеризующая порождённое этими изменениями магнитное поле, но в отличие от тока (см.) не связанная с переносом… … Большая политехническая энциклопедия

ток смещения I — 5.6 ток смещения I0 : Постоянный ток в управляющей катушке, обеспечивающий работу АМП на линейном участке зависимости магнитной силы от силы тока и изменения зазора в АМП (см. формулы в примечании к рисунку 12) Источник … Словарь-справочник терминов нормативно-технической документации

ток смещения — priešįtampio srovė statusas T sritis radioelektronika atitikmenys: angl. bias current vok. Verschiebungsstrom, m; Vorspannungsstrom, m rus. ток смещения, m pranc. courant de déplacement, m; courant de polarisation, m … Radioelektronikos terminų žodynas

ток смещения — slinkties srovė statusas T sritis Standartizacija ir metrologija apibrėžtis Kintančio elektrinio lauko reiškinys, pagal kuriamą magnetinį lauką lygiavertis elektros srovei. atitikmenys: angl. displacement current vok. Verschiebungsstrom, m rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

ток смещения — slinkties srovė statusas T sritis fizika atitikmenys: angl. displacement current vok. Verschiebungsstrom, m rus. ток смещения, m pranc. courant de déplacement, m … Fizikos terminų žodynas

Ток смещения — При построении теории электромагнитного поля Дж. К. Максвелл выдвинул гипотезу (впоследствии подтвержденную на опыте) о том, что магнитное поле создаётся не только движением зарядов (током проводимости, или просто током), но и любым… … Большая советская энциклопедия

Источник

Понятие тока смещения в электродинамике Максвелла

Хорошее объяснение тока смещения дано в [1]. Закон полного тока для произвольного контура в магнитном поле гласит: циркуляция вектора магнитной индукции вдоль замкнутого контура L в вакууме пропорциональна алгеброической сумме всех токов, пронизывающих поверхность, натянутую на этот контур [2, с.247],
см. Рис.1,(1).
Применим этот закон к замкнутому контуру с конденсатором, см. Рис. 1.
Если в качестве поверхности выбрать S1, то циркуляция индукции по контуру L будет равна току I. Однако если кто-то предпочтёт использовать поверхность S2, получится конфуз – циркуляция обратится в нуль – S2 токи не пронизывают. Чтобы избавиться от этого, Максвелл предложил к сумме токов в правой часть уравнения добавлять функцию Рис.1, (2), где D – вектор электрического смещения. Для поверхности S1 она равна нулю, для S2 – току I. Эту добавку Максвелл не совсем удачно назвал током смещения – в конденсаторе, находящемся в вакууме, никакого переноса зарядов нет.
Если вообразить, что ток смещения в смысле переноса каких-то гипотетических зарядов реально существует (в целях удобства расчётов, скажем), то можно будет считать, что для переменного тока цепь с конденсатором является замкнутым контуром.
Но тут возникает вопрос, что будет с циркуляцией, если контур L расположить в самом конденсаторе? Максвелл предложил (судя по всему), считать, что циркуляция и здесь определится током смещения; ток смещения в конденсаторе порождает переменное магнитное поле.
Экспериментальных данных, подтверждающих эту гипотезу, у Максвелла тогда не было. Как нет их (убедительных) и поныне. Если же опираться на электродинамику Ампера-Вебера, то магнитное поле внутри конденсатора может возникнуть лишь тогда, когда за время прохождения сигнала между обкладками, существенно изменится частота сигнала.

Заключение
• Попытки измерить магнитное поле токов смещения напрямую уже в наше время предпринимались неоднократно. В корректно поставленных экспериментах обнаружить магнитное поле не удалось.
• Гипотеза Максвелла о том, что ток смещения является источником магнитного поля, не соответствует, на мой взгляд, действительности. Электродинамика Фарадея-Максвелла – тупиковый путь развития этого раздела физики.
• Важные для дальнейшего развития электродинамики эксперименты ещё ждут своих авторов.

Источники информации
1. Наркевич И.И., Волмянский Э.И., Лобко С.И. – Физика. Учебник. Мн.: Новое знание, 2004. – 680 с.
2. Яворский Б.М., Детлаф А.А. Справочник по физике. – М.: Наука, 1990. – 624 с.
02.02.2015

Читайте также:  Формула работы силы тока через индукцию

Источник

Ток смещения

  • Что такое ток смещения
    • Ток смещения в диэлектрике
    • Полный ток
  • Как найти плотность тока смещения, формула

Что такое ток смещения

Ток смещения или абсорбционный ток — величина, которая прямо пропорциональна скорости изменения электрической индукции.

Каждому переменному магнитному полю свойственно вихревое электрическое поле. Проводя исследования разных электромагнитных процессов, Дж. К. Максвелл определил существование обратного явления, когда электрическое поле, изменяясь, приводит к появлению вихревого магнитного поля.

Данное утверждение является одним из основных в теории Максвелла. Известно, что магнитное поле является признаком любого тока. Основываясь на данном факте, ученый определил переменное электрическое поле, как ток смещения. При измерении он будет отличаться от тока проводимости, который представляет собой следствие движения заряженных частиц в виде электронов и ионов.

Токи смещения можно наблюдать только тогда, когда электрическое смещение \(\vec\) переменно, то есть наблюдают его колебания. Объемную плотность тока в этом случае можно измерить и рассчитать по формуле:

Вывод данного физического содержания теории Максвелла о токах смещения позволяет утверждать, что переменные электрические поля являются источниками переменных магнитных полей. Следует отметить, что для определения плотности тока смещения используют производную вектора \(\vec\)

Ток смещения в диэлектрике

Вектор электрической индукции измеряется по формуле:

Где \(\varepsilon _<0>\) — электрическая постоянная, \(\vec\) — вектор напряженности, \(\vec

\) — вектор поляризации.

Уравнение для тока смещения будет иметь следующий вид:

Где \(\frac>

\) — плотность тока поляризации.

Токи поляризации являются следствием движения связанных заряженных частиц, которые не обладают принципиальными отличиями по сравнению со свободными зарядами. Основываясь на данном факте, можно объяснить порождение магнитного поля токами поляризации. Принципиальной новизной отличается вторая часть уравнения тока смещения:

Данная формула не обладает связью с перемещением заряженных частиц, но также формирует магнитное поле. Можно сделать вывод, что в вакуумной среде любое изменение электрического поля по времени является причиной образования магнитного поля.

Нужно обратить внимание на то, что определение тока смещения для диэлектриков имеет какое-то обоснование, так как в них действительно можно наблюдать смещение зарядов в атомах и молекулах. Но этот термин применяют и к вакууму, в котором отсутствуют заряды, а, следовательно, и их смещение.

Полный ток

При наличии в проводнике переменного тока, внутри него будет образовано переменное электрическое поле. Таким образом, проводник будет вмещать в себе ток проводимости (j) и ток смещения. Магнитное поле проводника рассчитывают, как сумму вышеуказанных токов, то есть полный ток:

Роль данных слагаемых определяется двумя факторами:

  • электропроводность вещества;
  • частота переменного тока.

В зависимости от перечисленных характеристик можно наблюдать следующие процессы:

  1. Вещества с хорошей проводимостью такие, как металлы, при низкой частоте переменного тока: плотность тока смещения обладает небольшой мощностью, в то время как ток проводимости достаточно велик. В данной ситуации током смещения целесообразно пренебречь по сравнению с током проводимости.
  2. В веществах, для которых характерно высокое сопротивление, то есть изоляторах, при токе с большой частотой ведущая роль отведена току смещения. В этом случае в уравнении для общего тока слагаемые могут обладать одинаковыми или противоположными знаками.

Поэтому величина полного тока может быть меньше, либо превышать ток проводимости, а также равняться нулю. Таким образом, в общем случае переменных токов полный ток определяет магнитное поле. При размыкании контура на концах проводника наблюдают обрыв только тока проводимости. В диэлектрике между концами проводника возникает ток смещения, замыкающий ток проводимости. В итоге, из понятия электрического тока, как полного тока, вытекает утверждение, что в природе все токи замкнуты.

Как найти плотность тока смещения, формула

С целью установить количественную связь между изменяющимся электрическим полем и магнитным полем, которое вызвано электрическим, Максвелл ввел в рассмотрение ток смещения. Определение справедливо в случае работы с диэлектриками. В данных веществах заряженные частицы меняют положение по причине воздействия на них электрического поля.

В случае вакуумной среды заряды отсутствуют, хотя магнитное поле существует. То есть термин «тока смещения» не совсем удачный, однако его смыл абсолютно верный. Вывод, который сделал ученый, состоит в том, что любое переменное электрическое поле образует переменное магнитное поле. Токи проводимости в условиях проводника будут замкнуты токами смещения в диэлектрике или в вакууме. Переменным электрическим полем в конденсаторе создается такое же магнитное поле, как если бы между пластинами был ток проводимости, по величине равный току в металлическом проводнике.

Исходя из данного пояснения, можно рассчитать ток смещения. Поверхностная плотность поляризационных зарядов и вектор электрического смещения равны:

\(\sigma =E\varepsilon \varepsilon _<0>\)

\(\vec =E\varepsilon \varepsilon _<0>\)

Величину полного заряда на поверхности диэлектрика, а также на пластинах конденсатора, можно рассчитать по формуле:

Где S — площадь обкладки конденсатора.

Тогда можно записать следующую формулу:

Читайте также:  По двум параллельным проводникам текут одинаковые токи определить силу тока

Таким образом, ток смещения является величиной, пропорциональной скорости, с которой изменяется вектор электрического смещения \(\vec\)

Отсюда вытекает определение тока смещения. Плотность тока смещения можно найти по формуле:

Вихревое магнитное поле \(\vec\) образуется в результате протекания тока смещения, связано с направлением вектора \(\frac>

\) правилом правого винта. Относительная диэлектрическая проницаемость среды рассчитывается по формуле:

Где х — диэлектрическая восприимчивость среды.

В таком случае, можно получить уравнение:

\(D=\varepsilon \varepsilon _<0>E=(1+x)\varepsilon _<0>E\)

\(D=\varepsilon _<0>E+\varepsilon _<0>Ex\)

Вектор поляризации равен:

Таким образом, получим равенство:

Плотность тока смещения в вакууме:

Плотность тока поляризации:

Плотность тока обусловлена перемещением зарядов в диэлектрике.

Источник

Ток смещения

date image2014-02-02
views image2302

facebook icon vkontakte icon twitter icon odnoklasniki icon

Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, то должно сущест­вовать и обратное явление: всякое изменение электрического поля должно вы­зывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электриче­ским полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения.

Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 61). Между обкладками заряжающего конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор «протекают» токи смещения, причем в тех участках, где отсутствуют проводники.

Найдем количественную связь между изменяющимся электрическим и вызываемым им магнитным полем . По Максвеллу, переменное электриче­ское поле конденсатора в каждый момент времени создает такое магнитное по­ле, как если бы между обкладками конденсатора существовал ток проводимо­сти, равный току в проводящих проводах. Тогда можно утверждать, что токи проводимости (I) и смещения (Ісм) равны: Ісм=І. Ток проводимости вблизи об­кладок конденсатора

(поверхностная плотность заряда а на обкладках равна электрическому смеще­нию D в конденсаторе). Подынтегральное выражение в (5.3) можно рассматривать как частый случай скалярного произведения , когда и взаимно параллельны. Поэтому для общего случая можно записать

Сравнивая это выражение с І = Ісм = имеем

Выражение (5.4) и было названо Максвеллом плотностью тока смещения.

Рассмотрим, каково же направление векторов плотностей токов проводи­мости и токов смещения. При зарядке конденсатора (рис. 61) через проводник, соединяющий обкладки, ток течет от правой обкладки к левой, поле в конденсаторе усиливается, вектор растет со временем. Следовательно, , те.

вектор направлен в ту же сторону, что и .

На рисунке видно, что направления векторов и совпадают. При разрядке конденсатора (рис. 61, б) через проводник, соединяющий обкладки, ток течет от левой обкладки к правой, поле в конденсаторе ослабляется, вектор убывает со временем, Следовательно , т.е. вектор направлен противоположно вектору . Однако вектор направлен опять так же, как и вектор . Из разнообразных примеров следует, что направление вектора , а следовательно, и вектора см совпадает с направлением вектора , как это и следует из формулы (5.4).

Из всех физических свойств, присущих току проводимости, Максвелл приписал току смещения лишь одно — способность создавать в окружающем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем пространстве магнитное поле.

В диэлектриках ток смещения состоит из двух слагаемых. Так как, согласно , где — напряженность электростатического поля, а — поляризованность, то плотность тока смещения

где — плотность тока смещения в вакууме, — плотность тока поляризации — тока, обусловленного упорядоченным движением электрических зарядов в диэлектрике (смещение зарядов в неполярных молекулах или поворот дипо­лей в полярных молекулах)

Возбуждение магнитного поля токами поляризации правомерно, т.к. токи поляризации по своей природе не отличаются от токов проводимости. Однако то, что и другая часть плотности тока смещения ( ), не связанная с движением зарядов, а обусловленная только изменением электрического поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла. Даже в вакууме всякое изменение во времени элек­трического поля приводит к возникновению в окружающем пространстве маг­нитного поля

Следует отметить, что название (ток смещения) является условным, а точ­нее — исторически сложившимся, т.к. ток смещения по своей сути — это из­меняющееся со временем электрическое поле. Ток смещения поэтому сущест­вует не только в вакууме или диэлектриках, но и внутри проводников, по кото­рым течет переменный ток. Однако в данном случае он пренебрежительно мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально советским физиком А.А.Эйхенвальдом, изучавшим магнит­ное поле тока поляризации, которое, как следует из (5.5), является частью тока смещения

Максвелл ввел понятие полного тока, равного сумме токов проводимости и смещения. Плотность полного тока

Введя понятие тока смещения и полного тока, Максвелл по-новому подошел к рассмотрению замкнутости цепей переменного тока. Полный ток в них всегда замкнут, т.е. на конце проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.

Максвелл обобщил теорему о циркуляции вектора Н ( ), введя в ее

Читайте также:  Электрический ток его характеристики условия существования тока

правую часть полный ток сквозь поверхность S, натянутую на

замкнутый контур L. Тогда обобщенная теорема о циркуляции вектора Н запишется в виде

Выражение (5.6) справедливо всегда, свидетельством чего является полное соответствие теории и опыта.

Источник

Ток смещения

Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения.

Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 196). Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор «протекают» токи смещения, причем в тех участках, где отсутствуют проводники.

Найдем количественную связь между изменяющимся электрическим и вызываемым им магнитным полями. По Максвеллу, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обкладками конденсатора существовал ток смещения, равный току в подводящих проводах. Тогда можно утверждать, что токи проводимости ( I ) и смещения ( I см) равны: I см = I .

Ток проводимости вблизи обкладок конденсатора

(поверхностная плотность заряда s на обкладках равна электрическому смещению D в конденсаторе (см. (92.1)). Подынтегральное выражение в (138.1) можно рассматривать как частный случай скалярного произведения когда и dS взаимно параллельны. Поэтому для общего случая можно записать

Сравнивая это выражение с (см. (96.2)), имеем

Выражение (138.2) и было названо Максвеллом плотностью тока смещения.

Рассмотрим, каково же направление векторов плотностей токов проводимости и смещения j и jсм. При зарядке конденсатора (рис. 197, а) через проводник, соединя­ющий обкладки, ток течет от правой обкладки к левой; поле в конденсаторе усиливается; следовательно, > 0, т. е. вектор направлен в ту же сторону, что и D. Из рисунка видно, что направления векторов и j совпадают. При разрядке конденсатора (рис. 197, б) через проводник, соединяющий обкладки, ток течет от левой обкладки к правой; поле в конденсаторе ослабляется; следовательно, направлен противоположно вектору D . Однако вектор направлен опять так же, как и вектор j . Из разобранных примеров следует, что направление вектора j , а следовательно, и вектора j см, совпадает с направлением вектора , как это и следует из формулы (138.2).

Подчеркнем, что из всех физических свойств, присущих току проводимости, Макс­велл приписал току смещения лишь одно — способность создавать в окружающем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем пространстве магнитное поле (линии индукции магнитных полей токов смещения при зарядке и разрядке конденсатора показаны на рис. 197 штриховыми линиями).

В диэлектриках ток смещения состоит из двух слагаемых. Так как, согласно (89.2), D = e E + P , где Е – напряженность электростатического поля, а Р — поляризованность, то плотность тока смещения

где e плотность тока смещения в вакууме, — плотность тока поляризации — тока, обусловленного упорядоченным движением электрических зарядов в ди­электрике (смещение зарядов в неполярных молекулах или поворот диполей в поляр­ных молекулах). Возбуждение магнитного поля токами поляризации правомерно, так как токи поляризации по своей природе не отличаются от токов проводимости. Однако то, что и другая часть плотности тока смещения , не связанная с движением зарядов, а обусловленная только изменением электрического поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла. Даже в вакууме всякое изменение во времени электрического поля приводит к возник­новению в окружающем пространстве магнитного поля.

Следует отметить, что название «ток смещения» является условным, а точ­нее — исторически сложившимся, так как ток смещения по своей сути — это изменя­ющееся со временем электрическое поле. Ток смещения поэтому существует не только в вакууме или диэлектриках, но и внутри проводников, по которым проходит переменный ток. Однако в данном случае он пренебрежимо мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально А.А. Эйхенвальдом, изучавшим магнитное поле тока поляризации, который, как следует из (138.3), является частью тока смещения.

Максвелл ввел понятие полного тока, равного сумме токов проводимости (а также конвекционных токов) и смещения. Плотность полного тока

Введя понятия тока смещения и полного тока, Максвелл по-новому подошел к рас­смотрению замкнутости цепей переменного тока. Полный ток в них всегда замкнут, т. е. на концах проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.

Максвелл обобщил теорему о циркуляции вектора Н (см. (133.10)), введя в ее правую часть полный ток I полн = j полн dS сквозь поверхность S , натянутую на замкнутый контур L . Тогда обобщенная теорема о циркуляции вектора Н запишется в виде

Выражение (138.4) справедливо всегда, свидетельством чего является полное соответствие теории и опыта.

Источник