Меню

Что такое ток периодической составляющей



5 Определение периодической составляющей тока короткого замыкания в произвольный момент времени

Определение периодической составляющей тока короткого замыкания в произвольный момент времени

Точный расчет тока при коротком замыкании в произвольный момент времени громоздок и требует большой вычислительной работы. В 20-е годы натурные эксперименты на модельных электростанциях дали возможность определить изменение периодической составляющей до установившегося значения. Полученные расчетные кривые впоследствии неоднократно уточнялись, но суть методики оставалась неизменной. Методика расчета определяется удаленностью точки короткого замечания от источников. Можно выделить три основные случая.

1. При значительном удалении точки КЗ от источников ЭДС может считаться неизменной и периодическая составляющая тока во времени не меняется, т.е. Источник можно считать удаленным от точки КЗ, если составляющая тока подпитки от него не более полуторакратного номинального тока источника . Поскольку периодическая составляющая тока КЗ от такого генератора практически не изменяется во времени и их можно объединить с ветвью системы (если она есть), для которой тоже ток КЗ считается неизменным.

Практически: если источник отделен от точки КЗ двумя или более последовательно включенными трансформаторами (автотрансформаторами), двумя двумя расщепленными обмотками трансформатора, реактором то источник можно считать удаленным и объединять с ветвью системы.

2. Если точка КЗ находится вблизи одних источников и удалена от других, то предварительно необходимо провести объединение источников или, наоборот, отдаление источников так, чтобы получить отдельные ветви от источников, находящихся в примерно одинаковых условиях по отношению к точке КЗ, до этой точки КЗ. После этого можно воспользоваться расчетными (типовыми) кривыми рис. 4-1.

Для этого значение тока КЗ от источника (генератора) выражают в относительно номинальных единицах

по значению выбирают подходящую кривую, например 4, для расчетного момента t , предположим 0,25 с определяют коэффициент затухания , в данном случае 0,78, и вычисляют искомое значение тока

Рис. 4.1. Расчетные кривые

Ток в месте короткого замыкания определится как сумма токов от всех генераторных ветвей, включая систему.

3. Если точка КЗ находится вблизи группы двигателей, то периодическая составляющая тока КЗ от асинхронного двигателя быстро затухает и ее значение спустя время t с момента возникновения КЗ можно упрощенно определить по выражению

где Т — постоянная времени затухания периодической составляющей тока КЗ асинхронного двигателя или группы двигателей .

Ток в месте КЗ определится, как сумма составляющих тока от двигателя и системы.

Примечание: 1. Практически уже при времени t > 0,1 с ток подпитки асинхронного двигателя затухает настолько, что им можно пренебречь.

2. Синхронные двигатели и синхронные компенсаторы вводятся в расчет аналогично источникам ( п2 ).

ПРИЛОЖЕНИЕ 1

Метод типовых кривых

Метод типовых кривых является развитием метода расчетных кривых, который изложен выше. Типовые кривые используются для расчета периодической составляющей тока КЗ в произвольный момент времени. Кривые применимы для генераторов и крупных синхронных компенсаторов. Кривые дают зависимость изменения во времени отношения действующего значения периодической составляющей тока КЗ от генератора в произвольный момент времени к его значению в начальный момент короткого замыкания при разных удаленностях точки КЗ. Удаленность точки КЗ характеризуется отношением

Номинальный ток подсчитывается по формуле:

Для расчета в относительных единицах удобно пользоваться формулой:

где — ток от генератора в начальный момент КЗ, приведенный к базисным условиям.

После расчета и находят ; если последний оказывается дробным числом, то его округляют до ближайшего целого числа или интерполируют кривые. Далее выбирают соответствующую типовую кривую и для расчетного момента времени определяют отношение а затем вычисляют периодическую составляющую тока КЗ в момент .

Если в схеме несколько генераторов и после преобразования схемы окажется, что все они непосредственно связны с точкой КЗ, то для каждой ветви определяют токи КЗ отдельно и затем суммируют их для получения тока в точке КЗ.

Пример

Для генераторов общей мощностью 220 МВА с за сопротивлением при определить действующее значение периодической составляющей тока КЗ через 0,2 сек. Начальное значение периодической составляющей тока КЗ

Номинальный ток генераторов

По типовым кривым (рис.П1) при и определяем откуда

Источник

Определение периодической составляющей тока к.з.

Дополнительно по теме

Определение периодической составляющей тока короткого замыкания от мощных генераторов

Параметры отечественных мощных генераторов существенно отличны от параметров генераторов малой и средней мощности.

Использование расчетных кривых рис. 38-12 и 38-13 для мощных машин приводит к значительным погрешностям.

Читайте также:  Таблица по току для асинхронного двигателя

На основе упрощенных уравнений Парка — Горева для синхронной машины с использованием ЭВМ получены кривые изменений периодических составляющих тока к. з. мощных турбо- и гидрогенераторов. Расчеты проведены для следующих исходных условий:

1. Генератор до к. з. работал с номинальной нагрузкой; нагрузка подключена на стороне высшего напряжения трансформатора блока (рис. 38-17).

Рис 38-17. Схема к определению токов короткого замыкания от мощных генераторов.

2. В качестве основной принята вентильная независимая система возбуждения с постоянной . Расчеты выполнены также для электромашиниого возбудителя (резервное возбуждение) с с. Потолочное возбуждение принято для турбогенераторов , для гидрогенераторов .

3. Короткое замыкание рассмотрено на выводах генератора и за трансформатором блока (точки 1 и 2 рис. 38-17).

Кривые, представленные на рис, 38-18 — 38-20, дают зависимость

где — периодическая составляющая тока к. з. в момент г; — периодический (сверхпереходный) ток в момент t=0.

Для определения тока в килоамперах необходимо вначале вычислить сверхпереходный ток . При к. з. на выводах

при к. з. за трансформатором блока

где Е» — сверхпереходная э. д. с. генератора, о. е; — номинальный ток генератора, кА; — то же, но приведенный к ступени высшего напряжения ВН трансформатора, кА; — сверхпереходное индуктивное сопротивление генератора, о. е.; — индуктивное сопротивление трансформатора, приведенное к номинальной мощности генератора, о. е.

Искомый периодический ток равен

Здесь определяется по кривым рис. 38-18-38-20 для заданного момента t.

На рис. 38-18 даны кривые, которые следует использовать для турбогенераторов 200, 300 и 500 МВт типов ТВВ, ТГВ и ТВМ. По этим же кривым могут быть найдены токи для блока, состоящего из синхронного компенсатора типа КСВ мощностью 50 или 100 MBА и трансформатора соответствующей мощности. Изменение тока к. з. от наиболее мощных турбогенераторов (800 и 1 200 МВт) дано на рис. 38-19. Кривые для гидрогенераторов представлены на рис. 38-20. Здесь даны средние кривые для отечественных гидрогенераторов мощностью 115, 225 и 500 МВт.

При продолжительности к. з. t>2 с можно принимать ток равным его значению при t=2 с.

Рис. 38-18. Кривые отношения периодического тока короткого замыкания турбогенераторов 200—500 МВт к их сверхпереходному току. 1 — к. з. на выводах генератора: 2— к. з. за трансформатором; сплошные кривые — при Те=0; пунктирные кривые — при Те=0,25 с.

Рис. 38-19. Кривые отношения периодического тока короткого замыкания турбогенераторов 800 ц 1 200 МВт к их сверхпереходному току при Те=0. 1 — к. з. на выводах генератора; 2 — к. з. за трансформатором.

Рис. 38-20. Кривые отношения периодического тока короткого замыкания гидрогенераторов 115—500 МВт к их сверхпереходному току. 1 — к. з. на выводах генератора; 2—к. з. за трансформатором блока: сплошные кривые при Те=0; пунктирные кривые при Те— 0,25 с.

Дополнительно по теме

Общие указания к выполнению расчетов токов корткого замыкания

Трехфазное короткое замыкание

Несимметричные короткие замыкания

Короткое замыкание с одновременным разрывом фазы

Источник

Составляющие токов короткого замыкания при переходных процессах. Основные соотношения при трехфазном коротком замыкании

date image2015-05-26
views image15630

facebook icon vkontakte icon twitter icon odnoklasniki icon

Апериодическая составляющая тока короткого замыкания в электроустановке: Свободная составляющая тока короткого замыкания в электроустановке, изменяющаяся во времени без перемены знака.

Периодическая составляющая тока короткого замыкания рабочей частоты в электроустановке: Составляющая тока короткого замыкания в электроустановке, изменяющаяся по периодическому закону с рабочей частотой.

Для выбора и проверки электрооборудования по условию электродинамической стойкости необходимо знать наибольшее возможное мгновенное значение тока КЗ, которое называют ударным током и определяют по формуле:

где Iп0 — значение периодической слагающей тока КЗ в начальный момент; Куд — ударный коэффициент, зависящий от постоянной времени Та апериодической составляющей тока КЗ

где Хк и Rк — соответственно индуктивное и активное сопротивления цепи КЗ.

Зависимость ударного коэффициента Куд от постоянной времени Та определяется выражением

Рассмотрим возникновение тока КЗ в цепи переменного тока с синусоидальной ЭДС, от источника неограниченной мощности. Значения токов КЗ зависят от момента времени. В первые моменты ток имеет переходные значения, а затем, после затухания в цепи свободных токов и прекращения изменения напряжения возбудителей синхронных машин под действием АРВ, получает установившуюся величину, равную по закону Ома:

Для принятых условий допускается, что R = 0, тогда действующее значение тока КЗ:

Читайте также:  Наличие гальванических токов в полости рта

Угол сдвига тока по фазе φк = π/2.

Примем, что мгновенное значение ЭДС изменяется по закону ; мгновенное значение тока КЗ: .

Если предположить, что КЗ произошло в момент прохождения ЭДС через «0» (что является наиболее опасным случаем), то при t = 0

На рисунке 8.6 приведены кривые изменения тока короткого замыкания в цепи, питающейся от системы неограниченной мощности.

Рисунок 8.6 – Кривые изменения тока при коротком замыкании в удаленных точках от системы неограниченной мощности

Итак, при возникновении КЗ, в цепи появляются токи, имеющие следующие названия: периодическая составляющая тока КЗ, определяется по закону Ома и изменяется по гармонической кривой в соответствии с синусоидальной ЭДС генератора с рабочей частотой; апериодическая составляющая – определяется характером затухания тока КЗ, зависящего от активного сопротивления цепи и обмоток статора генератора, изменяющаяся со временем без перемены знака. В цепи с напряжением выше 1000 В, где значение активного сопротивления мало, время затухания апериодической составляющей 0,15 – 0,2 с. Полный ударный ток КЗ получается от алгебраического сложения первых двух.

Пока амплитуда полного тока уменьшается из-за наличия апериодического тока, его называют переходным током КЗ. Когда изменение амплитуды прекратятся, ток называется установившимся.

Источник

Апериодическая составляющая тока короткого замыкания

При наступлении режима КЗ постоянные токовые величины подвергаются существенным изменениям. В самое первое мгновение появляется так называемая апериодическая составляющая тока короткого замыкания, которая достаточно быстро угасает и принимает нулевое значение. Данный временной интервал, когда наблюдаются эти перемены, представляет собой переходный период, определяемый в числовом выражении. Пока аварийное состояние тока не будет отключено, работа электрической сети производится в установившемся режиме короткого замыкания.

  1. Физические свойства апериодической составляющей
  2. Полный ток при наступлении КЗ
  3. Как вычислить апериодическую компоненту
  4. Особенности вычислений в многоконтурных схемах

Физические свойства апериодической составляющей

Подобное состояние тока возникает в момент короткого замыкания. Его продолжительность и характеристики могут быть разными, в зависимости от многих факторов. Например, при наличии у двигателя демпферной обмотки, апериодическая составляющая тока короткого замыкания будет ниже, чем при ее отсутствии. Вначале возникает сверхпереходный ток, который вначале становится просто переходным, и лишь потом он начинает затухать.

Апериодическая составляющая тока короткого замыкания

Во время двухфазного замыкания, в статоре не появляются скачкообразные изменения тока. В подобных ситуациях, на холостом ходе возникает апериодическая составляющая, параметры которой совпадают с начальной величиной переменной компоненты. Поскольку ток КЗ внутри статора является однофазным, в отдельных случаях появление апериодической компоненты полностью исключается. В двигателях асинхронного типа этот показатель не учитывается, поскольку данные процессы очень быстро затухают. Он не принимается во внимание даже при расчетных вычислениях ударных токов КЗ.

В общем и целом, величина данных компонентов будет отличаться для каждой фазы. Ее начальные параметры будут зависеть от момента появления КЗ. На графиках она представляет собой сплошную кривую линию, поскольку все начальные амплитуды других составляющих будут ей равны, но направлены в обратную сторону.

Наличие апериодической составляющей устанавливается при расхождении контактов. Для ее оценки существует специальный параметр, представляющий собой соотношение между ней и периодической амплитудой в момент размыкания контактов. Время затухания составляет примерно 0,1-0,2 с и сопровождается значительным выделением тепла. Под действием высокой температуры заметно нагреваются токоведущие части и вся аппаратура в целом, несмотря на столь короткий промежуток времени.

Полный ток при наступлении КЗ

Сама по себе апериодическая компонента не может быть рассмотрена, поскольку она является одной из составных частей тока короткого замыкания. В электрической сети присутствуют сопротивления индуктивного характера, не дающие току мгновенно изменяться в момент появления КЗ. Рост нагрузочного тока проистекает не скачкообразно, а согласно определенных законов, предполагающих переходный период от нормального к аварийному значению. Расчетно-аналитическая работа значительно упрощается, когда ток КЗ во время перехода рассматривается как две составные части – апериодическая и периодическая.

Апериодическая часть представляет собой составную часть тока ia с неизменной величиной. Она появляется непосредственно в момент КЗ и в кратчайший срок падает до нулевой отметки.

Периодическая часть тока КЗ Iпm получила название начальной, поскольку по времени она появляется в самом начале процесса. Данный показатель используется для того чтобы выбрать наиболее подходящую уставку или проверить чувствительность релейной защиты. Этот ток известен еще и как сверхпереходный, поскольку его определение осуществляется с помощью сверхпереходных сопротивлений, вводимых в схему замещения. Периодический ток считается установившимся, когда затухает апериодическая часть и заканчивается сам переходный процесс.

Читайте также:  Сила тока трамвайной линии

Следовательно, полный ток короткого замыкания будет составлять сумму обоих частей – апериодической и периодической во весь период перехода состояний. В определенный момент полный ток за кратчайшее время принимает максимальное значение. Подобное состояние известно под названием ударного тока КЗ, определяемого при проверках электродинамической устойчивости установок и оборудования.

Выбор начального или сверхпереходного тока для проведения расчетов определяет скорое угасание апериодической части, которое происходит раньше, чем срабатывает защита. При этом периодическая составляющая остается неизменной.

Электрические сети, подключенные к генераторным установкам или энергетической системе с ограниченной мощностью, отличаются значительным изменением напряжения при появлении КЗ. В связи с этим, токи, начальный и установившийся, не будут равны между собой. Для того чтобы сделать расчет релейной защиты, можно воспользоваться показателями изначального тока. В этом случае погрешность будет незначительной в сравнении с установившимся током, подверженным воздействию различных факторов. Прежде всего, это увеличенное сопротивление в поврежденной точке, нагрузочные токи и прочие параметры, которые чаще всего не учитываются при выполнении расчетов.

Как вычислить апериодическую компоненту

Первоначальная величина апериодической части в модульном выражении определяется как разница между мгновенным показателем периодической части в начале КЗ и величиной тока непосредственно перед замыканием. То есть, апериодическая составляющая с максимальным первоначальным значением, сравняется с амплитудными параметрами периодической части тока при появлении КЗ. Это утверждение определяет формула: ia0 = √2Iп0, действующая при условии сниженной активной доли сопротивления в точке КЗ относительно индуктивной составляющей.

1. 2.

Кроме того, перед началом замыкания в расчетной точке не должно быть нагрузки, а напряжение какой-либо фазы к этому времени проходит по нулевому проводнику. Если же перечисленные требования не будут выполнены, то апериодическая часть в первоначальной стадии снизит свои показатели по отношению к амплитуде периодической составляющей.

Для того чтобы выполнить расчет апериодической составляющей тока короткого замыкания в любое произвольное время, заранее прорабатывается вариант замещения. Согласно первоначальной расчетной схеме, все составные элементы учитываются в качестве активных и индуктивных сопротивлений. Учет синхронных генераторов и компенсаторов, асинхронных и синхронных электродвигателей проводится путем перевода их в категорию индуктивных сопротивлений с обратной последовательностью. Обязательно учитываются сопротивления обмоток статора постоянному току с рабочей температурой установленной нормы.

3.

Когда в изначальной схеме расчетов присутствуют лишь компоненты, соединенные последовательно, в этом случае величина апериодической доли в любой момент времени определяется формулой 1, в которой Та является постоянной величиной, определяющей время затухания данной части. В свою очередь, Та можно вычислить по формуле 2, в которой Xэк и Rэк будут индуктивной и активной составляющими, а ωсинх является синхронной угловой частотой сетевого напряжения. Если же при расчетах необходимо учесть величину генераторного тока непосредственно перед коротким замыканием, тогда уже используется формула 3.

Особенности вычислений в многоконтурных схемах

Если в расчетах используются многоконтурные схемы, тогда на апериодическую составляющую не действует экспоненциальный закон временного изменения. Фактически, она выглядит в виде суммы токов, каждый из которых является экспоненциальной временной функцией и угасает в различные интервалы времени. Количество таких компонентов в цепях с активными и индуктивными ветвями, совпадает с численностью независимых контуров.

В этом случае апериодические составляющие могут быть вычислены с использованием специальных систем дифференциальных уравнений, учитывающих все активные и индуктивные сопротивления. Методика расчетов во многом зависит от того, как выглядит изначальная схема расчетов, и где расположена рассчитываемое место КЗ.

В некоторых вариантах источники энергии многоконтурной схемы замыкаются на расчетное место КЗ с помощью общего сопротивления. Приближенные расчеты позволяют установить затухание апериодической составляющей в течение какого-то постоянного промежутка времени. Существуют два метода решений, которые, относительно точного результате выдают погрешность с положительной или отрицательной направленностью. То есть, постоянная времени будет завышаться или занижаться.

Расчетная схема, разделенная точкой короткого замыкания на части, независимые между собой, в произвольный момент времени определяется в виде суммы апериодических составляющих, предусмотренных для каждого участка схемы. Их изменение по времени происходит относительно постоянного показателя, а полученные данные учитываются в расчетах.

Ударный ток короткого замыкания

Ток короткого замыкания однофазных и трехфазных сетей

Источник