Меню

Что такое полюсное деление машины постоянного тока



Конструкция машины постоянного тока

Дата публикации: 03 декабря 2011 .
Категория: Статьи.

В статье описано устройство стандартной машины постоянного тока. Рассмотрено, что из себя представляют главный и дополнительный полюс, якорь, коллектор и щеточный аппарат.

Рассмотрим несколько подробнее устройство машины постоянного тока и приведем краткое описание ее главных конструктивных элементов.

Конструкция полюсов

На рисунке 1 изображен полюс машины. Сердечники полюсов набираются из листов, выштампованных из электротехнической стали толщиной 0,5 – 1 мм, а иногда также из листов конструкционной стали толщиной до 2 мм. Так как магнитный поток полюсов в стационарных режимах не изменяется, то листы друг от друга обычно не изолируются. Сердечник полюса стягивается шпильками, концы которых расклепываются. Нижняя, уширенная, часть сердечника называется полюсным наконечником или башмаком. Расположенная на полюсе обмотка часто разбивается на 2 – 4 катушки для лучшего ее охлаждения.

Рисунок 1. Главный полюс машины постоянного тока

Число главных полюсов всегда четное, причем северные и южные плюсы чередуются, что достигается соответствующим соединением катушек возбуждения отдельных полюсов. Катушки всех полюсов соединяются обычно последовательно. Мощность, затрачиваемая на возбуждение, составляет около 0,5 – 3% от номинальной мощности машины. Первая цифра относится к машинам мощностью в тысячи киловатт, а вторая – к машинам мощностью около 5 кВт.

Для улучшения условий токосъема с коллектора в машинах мощностью более 0,5 кВт между главными полюсами устанавливаются также дополнительные полюсы, которые меньше главных по своим размерам. Сердечники дополнительных полюсов обычно изготавливаются из конструкционной стали.

Как главные, так и дополнительные полюсы крепятся к ярму с помощью болтов. Ярмо в современных машинах обычно выполняется из стали (из стальных труб в машинах малой мощности, из стального листового проката, а также из стального литья). Чугун вследствие относительно малой магнитной проницаемости не применяется.

В машинах постоянного тока массивное ярмо является одновременно также станиной, т. е. той частью, к которой крепятся другие неподвижные части машины и с помощью которой машина обычно крепится к фундаменту или другому основанию.

Конструкция якоря

Рисунок 2. Диск (а) и сегмент (б) стали якоря

Сердечник якоря набирается из штампованных дисков (рисунок 2, а) электротехнической стали толщиной 0,5 мм. Диски насаживаются либо непосредственно на вал (при Dа ≤ 75 см), либо набираются на якорную втулку (Dа ≥ 40 см), которая надевается на вал. Сердечники якоря диаметром 100 см и выше составляют из штампованных сегментов (рисунок 2, б) электротехнической стали. Сегменты набираются на корпус якоря, который изготовляется обычно из листового стального проката и с помощью втулки соединяется с валом. Для крепления к корпусу якоря сегменты отштамповываются с гнездами для ласточкиных хвостов либо с выступающими ласточкиными хвостами (рисунок 3).

Рисунок 3. Крепление сегментов стали якоря с помощью ласточкиных хвостов

1 – вентиляционные распорки; 2 – лист стали якоря; 3 – стяжной болт; 4 – ребро ступицы якоря; 5 – лист ступицы якоря

В сердечнике якоря в зависимости от выбранной системы вентиляции могут быть аксиальные или радиальные каналы. Аксиальные каналы образуются выштампованными в дисках сердечника отверстиями. Радиальные каналы создаются с помощью вентиляционных распорок или ветрениц, посредством которых сердечник якоря (рисунок 4) подразделяется на отдельные пакеты 1 шириной 40 – 70 мм и каналы 2 между ними шириной около 5 – 10 мм. Ветреницы приклепываются или привариваются к крайним листам пакетов. Сердечник якоря крепится с помощью нажимных плит или фланцев 6.

Рисунок 4. Сердечник якоря с обмоткой

В пазы на внешней поверхности якоря укладываются катушки обмотки якоря. Выступающие с каждой стороны из сердечника якоря (рисунок 4) лобовые части обмотки 3 имеют вид цилиндрического кольца и своими внутренними поверхностями опираются на обмоткодержатели 5, а по внешней поверхности крепятся проволочными бандажами 7. Обмотка соединяется с коллектором 4.

Воздушный зазор между полюсами и якорем в малых машинах менее 1 мм, а в крупных – до 1 см.

Конструкция коллектора

Рисунок 5. Коллектор

Устройство коллектора машины небольшой мощности показано на рисунке 5. Он состоит из медных пластин 1 толщиной 3 – 15 мм, изолированных друг от друга миканитовыми прокладками толщиной около 1 мм. Пластины имеют трапецеидальное сечение и вместе с прокладками составляют кольцо, которое скрепляется с помощью нажимных фланцев 4, стянутых стяжными болтами 7. От нажимных фланцев пластины коллектора изолируются миканитовыми коллекторными манжетами 2. Собранный коллектор крепится на валу 6 с помощью шпонки 5. К каждой пластине коллектора присоединяются соединительные проводники – «петушки» 3 – от обмотки якоря.

Подобное в принципе устройство имеют коллекторы подавляющего большинства машин. В последнее время в малых машинах коллекторные пластины с миканитовыми прокладками часто запрессовывают на пластмассу.

Конструкция щеточного аппарата

Для отвода тока от вращающегося коллектора и подвода к нему тока применяется щеточный аппарат, который состоит из щеток, щеткодержателей, щеточных пальцев, щеточной траверсы и токособирающих шин.

Одна из типичных конструкций щеткодержателя показана на рисунке 5. Щеткодержатели укрепляются на щеточных пальцах. На каждом щеточном пальце обычно помещают несколько или целый ряд щеткодержателей со щетками, которые работают параллельно. Щеточные пальцы, число которых обычно равно числу главных полюсов, крепятся к щеточной траверсе (рисунок 7)

Щеткодержатель со щеткой

Рисунок 6. Щеткодержатель со щеткой
1 – обойма щеткодержателя; 2 – щетка; 3 – нажимная пружина; 4 – токоведущий кабель; 5 – колодки для крепления к пальцу

Рисунок 7. Крепление щеточного пальца к траверсе
1 – палец; 2 – траверса; 3 – изоляция; 4 – токособирательная шина

и электрически изолируются от нее. Траверса крепится к неподвижной части машины: в машинах малой и средней мощности – к втулке подшипникового щита, а в крупных машинах – к станине. Обычно предусматривается возможность поворота траверсы для установки щеток в правильное положение. Полярности щеточных пальцев чередуются, и все пальцы одной полярности соединяются между собой сборными шинами. Шины с помощью отводов соединяются с выводными зажимами или с другими обмотками машины.

Коллектор и щеточный аппарат являются весьма ответственными узлами машины, от конструкции и качества изготовления которых в большой степени зависит бесперебойная работа машины и надежность электрического контакта между коллектором и щетками.

Общий вид машины постоянного тока

На рисунке 8 приведен чертеж, а на рисунке 9 – фотография машины постоянного тока в разобранном виде.

Общий вид электродвигателя постоянного тока

Рисунок 8. Общий вид электродвигателя постоянного тока 14 кВт, 220В, 1500 об/мин
1 – люковая крышка; 2 – коллекторная пластина; 3 – крепление коллектора пластмассой; 4 – кольцо для размещения корректирующих масс; 5 – траверса; 6 – передний подшипниковый щит; 7 – вал; 8 – обмоткодержатель; 9 – бандаж лобовых частей якоря; 10 – катушка добавочного полюса; 11 – сердечник добавочного полюса; 12 – станина; 13 – рым; 14 – сердечник якоря; 15 – сердечник главного полюса; 16 – катушка главного полюса; 17 – вентилятор; 18 – задний подшипниковый щит; 19 – задняя крышка подшипника; 20 – шариковый подшипник; 21 – передняя крышка подшипника; 22 – свободный конец вала; 23 – паз якоря; 24 – соединительные провода (выводы) от обмоток к доске выводов; 25 – коробка выводов

Электродвигатель постоянного тока типа П52

Рисунок 9. Электродвигатель постоянного тока типа П52, 8 кВт, 220 В, 43 А, 1500 об/мин

Одноякорные машины постоянного тока строятся мощностью до 10 МВт и напряжением преимущественно до 1000 В. Для электрифицированных железных дорог выпускаются также машины напряжением до 1500 В. На напряжения свыше 1500 В машины постоянного тока изготавливаются редко, так как с увеличением напряжения условия токосъема с коллектора ухудшаются.

В отдельных случаях (мощные ледоколы, приводы аэродинамических труб и пр.) требуются двигатели постоянного тока мощностью 15 – 30 МВт. В машинах с одним якорем получение таких мощностей не возможно, и поэтому строятся двух-, трех- и четырехъякорные машины, которые представляют собой многомашинные агрегаты с общим валом.

Источник: Вольдек А. И., «Электрические машины. Учебник для технических учебных заведений» – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

Источник

Машины постоянного тока

Области применения машин постоянного тока

Электрические машины постоянного тока широко применяются в качестве двигателей и несколько меньше – в качестве генераторов, так как двигатели постоянного ока допускают плавное регулирование частоты вращения простыми и обладают лучшими пусковыми качествами – развивают большой пусковой момент при относительно небольшом токе. Поэтому их широко используют в качестве тяговых двигателей на электротранспорте. Кроме того, они являются исполнительными звеньями систем автоматического регулирования. Машины постоянного тока входят в состав автомобильного, судового и самолетного электрооборудования, дорожно-строительных машин.

Существенным недостатком машин постоянного тока является искрение щеток при определенных неблагоприятных условиях работы в щеточно-коллекторном узле.

Устройство электрической машины

Электрическая машина постоянного тока состоит из двух основных частей: неподвижной – называемой статором, и вращающейся – называемой якорем. Эти части разделены воздушным зазором.

Читайте также:  Электрический ток осуществляется посредством ионной проводимости в металлах или газах

Статор машины состоит из станины, на внутренней поверхности которой расположены главные полюса. Станина служит основанием для крепления всех частей машины, а также является элементом магнитной цепи. Станины машин постоянного тока изготавливают из стали или чугуна.

Рис. 2.1 Устройство электрической машины постоянного тока:

/—коллектор; 2 — щетки; 3 — сердечник якоря; 4 — сердечник главного полюса;

5 — полюсная катушка; 6 — станина; 7 — подшипниковый щит; 8 — вентилятор;

9 — обмотка якоря.

Главные (основные) полюса машины состоят из: сердечников из штампованной стали и катушек возбуждения из медного изолированного провода. Полюсы крепят к внутренней поверхности станины болтами. Катушки всех главных полюсов электрически соединяются, образуя обмотку возбуждения, и предназначаются для возбуждения главного магнитного потока.

Рис. 2.2 Лист сердечника якоря

Соединение катушек производится таким образом, чтобы при прохождении тока полярности полюсов чередовались. Наряду с основными полюсами меньше по размеру располагается дополнительная обмотка возбуждения, которая служит для уменьшения искрения на щетках (улучшение коммутации).

Якорь – часть машины, в обмотке которой при вращении ее, относительно главного магнитного поля индуктируется ЭДС. Якорь машины постоянного тока состоит из сердечника, обмотки якоря, уложенной в его пазах, коллектора насаженного на вал якоря. Сердечник якоря, набирается из листов электротехнической стали (рис. 2.3, а) толщиной 0,5 мм, изолированных друг от друга лаком.

У машин малой мощности пазы делают полузакрытыми, а в машинах средней и большой мощности – открытыми. Часто пазы якоря делают со скосом, что уменьшает вибрацию и шум в процессе работы машины.

В пазы сердечника якоря уложена обмотка якоря (рис. 2.3, б), обычно состоящая из отдельных секций, выполненных из медного изолированного провода. Концы секций припаивают в пазах и укрепляют с помощью гетинаксовых или деревянных клиньев. Особенностью обмотки якоря является то, что она барабанного типа. Для отвода тока от коллектора служат щетки, установленные в щеткодержателях (рис. 2.4). Щетку 1 к коллектору прижимает пружина 2 . Щеткодержатели надеваются на щеткодержательную траверсу (отверстие 3), от которой они электрически изолируются.

Коллектор (рис. 2.5) состоит из коллекторных пластин 2, изготовленных из холоднокатанной меди клинообразующего профиля (поперечного сечения), основания коллектора – втулки 5, нажимной шайбы 3, гайки 6 и изоляционных пластин – миканита 1,4.

Для присоединения секции обмотки якоря к коллектору у пластин со стороны сердечника делают выступы, называемые «петушками».

Рис. 2.5 Устройство коллектора

Помимо указанных частей, машина имеет два подшипниковых щита: передний (со стороны коллектора) и задний (с противоположной стороны). В машинах малой и средней мощности, а также в тихоходных и малошумных машинах используются подшипники скольжения.

Для присоединения обмоток машины к электрической сети машины, снабжена коробкой выводов – клеммной платой.

По способам возбуждения электрические машины классифицируются:

— машины независимого возбуждения: обмотка возбуждения ОВ питается постоянным током от источника, электрически не связанного с обмоткой якоря Я (рис. 2.6, а);

— машины параллельного возбуждения (шунтовые): обмотка возбуждения и обмотка якоря соединены параллельно (рис. 2.6, б)

— машины последовательного возбуждения (серийные): обмотка возбуждения и обмотка якоря соединены последовательно (рис. 2.6, в);

— машины смешанного возбуждения (компаундные). В них две обмотки возбуждения: одна из них ОВ1 (шунтовая), включена параллельно, а другая ОВ2(серийная) – последовательно с обмоткой якоря (рис. 2.6, г).

Все указанные машины относятся к машинам с электромагнитным возбуждением, так как магнитное поле в них создается посредством электрического тока обмотки возбуждения.

— магнитоэлектрические машины: магнитное поле возбуждения создается постоянными магнитами (рис. 2.6, д).

Рис. 2.6. Способы возбуждения электрических машин постоянного тока

Роль щеточно-коллекторного механизма

Работа машины постоянного тока может сопровождаться искрением между краем щеток и коллекторными пластинами, когда возникает местный искровой разряд. Это приводит к разрушению поверхности коллектора и щеток, нагреву коллектора, снижению надежности машины постоянного тока и т. п. В случае неудовлетворительного состояния щеточно-коллекторного узла щетка может оторваться от коллектора, возникающий при этом кратковременный разрыв цепи тока якоря вызывает образование дуги. При этом машина не должна эксплуатироваться. Для избежания этого недостатка необходимо периодически протягивать и шлифовать коллектор.

Чаще причиной искрения является неудовлетворительная коммутация – процесс переключения секций обмотки якоря из одной параллельной ветки якоря в другую. Рассмотрим на примере режима генератора роль щеточно-коллекторного узла (рис. 2.7).

В машинах постоянного тока щетки располагаются вблизи геометрической нейтрали, которая делит машину постоянного тока на две симметричные части.

Предположим, что ток в машинах постоянного тока, от независимого источника питания (аккумуляторная батарея к обмоткам возбуждения подведено напряжение), проходящий по виткам обмотки возбуждения создает в машине постоянный магнитный поток, путь которого определяется правилом буравчика.

Силовые линии магнитного поля являются замкнутыми. Вал у машины постоянного тока от потока механической энергии подведем внешний момент. Проводники обмотки якоря будут пересекать силовые линии магнитного поля, будет проводится ЭДС.

где Вср – электромагнитная индукция,

la – длина проводника;

V — линейная скорость проводника.

Очевидно, что частота в обмотке якоря будет пропорциональна скорости вращения якоря. Частота наведения ЭДС будет определяться периодом вращения якоря.

ЭДС в проводе достигает максимальное значение, когда проводник располагается над серединой полюса, и ЭДС равна нулю, когда проводник проходит геометрическую нейтраль.

ЭДС якоря относительно щеток, представляет собой суммарный ЭДС ек, т.к. ЭДС остается неизменным.

где Nпр – число пазов;

а – число пар параллельных ветвей.

Вывод формулы обмотки якоря.

Величина ЭДС каждого проводника обмотки якоря в процессе работы машины постоянного тока определяется выражением

Так как магнитная индукция в воздушном зазоре распределяется по трапецевидной кривой, то лучше использовать среднее значение магнитной индукции в воздушном зазоре Вср.

Рис. 2.11 Распределение магнитной индукции в воздушном зазоре

электрической машины постоянного тока

Из прямоугольника abcd определим высоту Вср, где полюсное деление t является основание, а площадь прямоугольника равна площади фигуры, ограниченной трапецевидной кривой. Подставим в (1) величину Вср, получим среднее значение ЭДС.

где Вср – среднее значение магнитной индукции,

l – активная длина проводника,

v – окружная скорость якоря.

ЭДС обмотки якоря Еа определяется по формуле

где N – число проводников всей обмотки якоря,

– число параллельных ветвей.

Подставив выражение (2.5) в (2.6), получим

где v – линейная скорость, ;

D – диаметр якоря;

pD – длина окружности якоря.

Так как полюсное деление

где 2p – число пар полюсов.

Подставив выражение (2.9) в (2.8), получим

Подставив выражение (2.11) в (2.10), получим

— постоянная машины, тогда

где Ея – ЭДС обмотки якоря, В;

n – скорость вращение якоря, об/мин;

а – число пар параллельных ветвей и обмотки якоря.

Формула (2.11) показывает, что ЭДС якоря пропорциональная скорости вращения подвижной части (якоря) и при ненасыщенной магнитной системе машины постоянного тока пропорциональна также магнитному потоку.

Вывод формулы электромагнитного момента

машины постоянного тока.

Электромагнитный момент постоянного тока преимущественно применяется в качестве двигателя и реже – в качестве генератора.

В режиме генератора уравнение электрического состояния обмотки якоря имеет вид

U – напряжение в нагрузке.

В режиме двигателя U – источник питания. Ея играет роль противоЭДС.

Уравнение баланса мощностей в режиме генератора постоянного тока.

Мощность в нагрузке определяется по формуле

где Pэм – электромагнитная мощность,

эл – тепловые потери.

Во всех случаях электромагнитная мощность представляет собой

В режиме генератора Мэм – вращающий момент сопротивления движения (момент нагрузки имеет противоположное движение).

В режиме двигателя Мэм – вращающий момент, обороты двигателя направлены в одну сторону.

Природа возникновения электромагнитного момента одна и та же.

, (2.18)
. (2.19)

Величина постоянная для машины

. (2.20)
(2.21)

Электромагнитный момент пропорционален току якоря и при насыщенной магнитной системе магнитному потоку якоря.

3.Электрические схемы и рабочие характеристики машины постоянного тока в режиме генератора и двигателя

Принцип действия генератора постоянного тока основан на явлении электромагнитной индукции: наводимая в проводнике ЭДС (е) прямо пропорциональна магнитной индукции (В), активной длине проводника l и скорости перемещения v ( ).

Генераторы постоянного тока по способу возбуждения, т. е. создания магнитного потока в машинах делятся на ГПТ независимого возбуждения и ГПТ смешанного возбуждения.

Такой генератор имеет жесткую характеристику

Способ возбуждения данного генератора состоит в том, что необходим дополнительный источник постоянного напряжения, мощность которого не превышает 3-5 % усталостной мощности генератора постоянного тока.

В качестве источника постоянного напряжения может быть выбран маломощный выпрямитель, работающий на однофазном токе в виде мостовой схемы, ли аккумуляторная батарейка.

Читайте также:  Ток через трехфазный автомат

Исходя из анализа, внешняя характеристика является жесткой.

Зависимость ЭДС от тока возбуждения при разомкнутой цепи якоря (Iя=0) и постоянной частоте вращения n=const называется характеристикой холостого хода Eя=F(Iв).

Зависимость напряжения U от тока якоря Iя при неизменных токе возбуждения Iв и частоте вращения n, называется внешней характеристикой (рис. 3.3).

На основании внешней характеристики определяется номинальное изменение напряжения генератора.

(3.3)
(3.4)
(3.5)

Генераторы самовозбуждения устойчивы к токам короткого замыкания.

Регулировочной характеристикой генератора называется зависимость тока возбуждения Iв от тока якоря Iя при постоянных напряжении и частоте вращения n.

Рассмотрим процесс самовозбуждения генератора параллельного возбуждения.

В качестве привода может быть использован асинхронный двигатель.

1- характеристика холостого хода генератора постоянного тока,

2- характеристика цепи возбуждения.

Для самовозбуждения необходимо согласное направление, что имеет место при правильном соединении обмотки возбуждения с якорем. При таком соединении напряженность поля от тока возбуждения усиливает магнитное поле, а последнее индуктирует большую ЭДС в обмотке якоря. Возрастание ЭДС вызывает дальнейшее увеличение тока возбуждения. Ограничение самостоятельного увеличения потока и тока возбуждения. Ограничение самостоятельного увеличения потока и тока возбуждения связано с насыщением магнитной цепи машины.

Характеристика холостого хода генератора при параллельном возбуждении практически не отличается от характеристики при независимом возбуждении.

Но внешняя характеристика при параллельном возбуждении генератора (а) идет значительно ниже, чем при независимом возбуждении (в) (рис. 3.9).

Причиной этому является уменьшение тока возбуждения при понижении напряжении, так как .

— магнитная система должна быть намагничена, т. е. в машине должен существовать остаточный магнитный поток.

— характеристика холостого хода генератора не должна проходить через начало координат.

— процесс самовозбуждения начинается с появления остаточного напряжения.

— обмотка возбуждения имеет начало и конец, и если их поменять местами, то магнитное поле не получим.

— точка А должна в обмотке рабочее движение генератора.

— пересечение характеристик холостого хода и цепи возбуждения должно быть в области рабочих значений цепи генератора.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Что такое полюсное деление машины постоянного тока

V. СХЕМЫ ОБМОТОК МАШИН ПОСТОЯННОГО ТОКА

38. ЯКОРНЫЕ ОБМОТКИ (ОСНОВНЫЕ СВЕДЕНИЯ)*

Обмотка якоря состоит из секций. Секция представляет собой наименьшую часть обмотки, заключенную между двумя присоединениями к коллектору. Секция может состоять из одного, двух или нескольких витков. Активные стороны одной секции располагаются под разными полюсами на расстоянии, обычно равном или несколько меньшем полюсного деления.

Полюсное деление — часть окружности якоря, приходящаяся на один полюс. Величина полюсного деления (см)

part5-1.jpg

где D — диаметр якоря, см; 2 р — число полюсов.

В зависимости от формы секций различают волновые, петлевые и комбинированные (лягушечьи) обмотки. Волновые и петлевые обмотки в зависимости от шага по коллектору могут быть простыми и сложными. Сложные обмотки называют также многоходовыми.

Волновые в петлевые якорные обмотки обычно выполняют двухслойными **, присоединяя к каждой коллекторной пластине выводы двух секций. Следовательно, число секций обмотки S равно числу коллекторных пластин К. В пазу якоря может быть расположено две, четыре, шесть и более сторон секций. Каждая пара расположенных друг над другом сторон образует элементарный паз, число которых в реальном пазу обозначается ип. Число элементарных пазов якоря равно произведению числа пазов z на ип и равно числу секций, т. е. zэ=zип=S=K***.

Лягушечья обмотка укладывается в пазах якоря в четыре слоя, причем волновая обмотка охватывает петлевую (одна сторона секции волновой обмотки располагается у клина, вторая — на дне паза).

В зависимости от взаимного расположения выводов секций различают также неперекрещенные и перекрещенные обмотки (рис. 89, 90).

Катушкой якорной обмотки называют группу секций, образующих элемент обмотки до укладки в пазы. Катушка состоит из одной или нескольких секций, обычно имеющих общую корпусную изоляцию. Число секций в каждой стороне катушки равно числу элементарных пазов в реальном пазу якоря. Часть катушки, расположенную вне пазов, называют лобовой частью. Различают лобовую часть со стороны коллектора и с противоположной стороны.

При большом сечении шин катушки для облегчения укладки выполняют из двух частей (полукатушек). Секция в этом случае имеет обычно один виток и состоит из двух полусекций (стержней). Такая обмотка называется стержневой. Переход из верхнего слоя в нижний осуществляется при помощи хомутиков, надеваемых на концы стержней и припаиваемых к ним.

* Схемы разметки якоря см.: Виноградов Н. В. Обмотчик электрических машин. — М: Высшая школа, 1977.

** В очень редких случаях для низковольтных машин на большие токи применяют однослойные обмотки.

*** Исключение из этого правила составляет обмотка с «мертвой> секцией.

part5-2.jpg

Рис. 89. Простая петлевая обмотка: а — неперекрещенная (правая), б — перекрещенная (левая)

part5-3.jpg

Рис. 90. Простая волновая обмотка: а — неперекрещенная (левая), б — перекрещенная (правая)

Таблица 59. Шаги, числа параллельных ветвей и условия симметрии петлевых и волновых обмоток

part5-4.jpgpart5-5.jpg

Примечание. y1 — первый шаг — расстояние между сторонами одной и той же секции (ширина секции). Обычно выполняются обмотки с первым шагом y1≤τ; y2 — второй шаг — расстояние между второй стороной данной секции и первой стороной следующей за ней по схеме секции; у — результирующий шаг — расстояние между верхними или нижними сторонами двух следующих друг за другом по схеме секций; ук — шаг по коллектору — расстояние между началом и концом секции, измеренное числом коллекторных делений; — число параллельных ветвей; m — коэффициент кратности, равный числу простых обмоток, составляющих сложную; | — наименьшее дробное число, которое надо вычесть или прибавить, чтобы частное от деления числа элементарных пазов на число полюсов равнялось целому числу.

Шаги обмотки y1, y2 и у обычно выражают числом секций или элементарных пазов (табл. 59). Шаг по коллектору измеряют числом коллекторных пластин, а шаг по пазам yz — числом пазов. Полюсное деление т также может быть выражено числом элементарных пазов:

part5-6.jpg

Якорные обмотки должны удовлетворять требованиям симметрии, поэтому соотношения между ип, z, а и К должны иметь определенные значения (см. табл. 59). В сложной волновой обмотке выбор ип и z еще более ограничен (табл. 60).

Значения ип при числе пар полюсов

Источник

Что такое полюсное деление машины постоянного тока

2. Основные части и принцип действия машин постоянного тока

Конструктивно машина постоянного тока состоит из неподвижного статора (индуктора) с полюсами и вращающегося ротора (якоря) с коллектором (рис. 2.1,а). Статор является источником магннтного поля и механическим остовом машины, якорь- часть машины, в обмотке которой индуцируется э. д. с.

На одном валу с якорем жестко закрепляется коллектор (рис. 2.1,б), электрически соединенный с его обмоткой. Коллектор — характерная деталь машины постоянного тока. Его медных пластин касаются неподвижные угольно-графитовые щетки, размещенные в щеткодержателях (рис. 2.1,в) на траверсе и электрически соединенные с внешней цепью. Во избежание искрения щетки тщательно притираются к коллектору, а их умеренный нажим должен быть отрегулирован.

Принцип действия машин постоянного тока основан на законе электромагнитной индукции и законе Ампера. Магнитное поле машины (рис. 2.1,д) создается постоянным током (током возбуждения) в обмотке полюсов или постоянными магнитами в машинах малой мощности. Его силовые линии замыкаются через стальные станину, сердечники полюсов и сердечник якоря, дважды преодолевая на своем пути воздушный зазор между ними. Магнитная цепь четырехполюсной машины постоянного тока разветвленная, симметричная. Плоскость, проходящую через ось машины под углом а, при котором она перпендикулярна к силовым линиям, называют геометрической нейтралью (при а. = 0 и 772 на рис. 2.1,г).

Существует два режима работы эл. двигателей

а: режим генератора

б: режым двигателя

В режиме генератора машина преобразует механическую энергию в электрическую: к обмотке возбуждения статора подводится по­стоянный ток возбуждения, а якорь вращается каким-либо первичным двигателем. При этом провода обмотки якоря пересекают магнитные силовые линии полюсов и в них индуцируются э. д. с. С помощью коллектора и щеток, которые являются механическим выпрямителем, эти переменные пульсирующие э. д. с. суммируются в постоянную по значению и направлению э. д. с. машины Е. Если к щеткам подклю­чить приемник, то в нем установится постоянный ток I .

В режиме двигателя машина преобразует электрическую энергию в механическую: к якорю и к обмотке возбуждения машины одновре­менно подводится постоянный ток от источника. Взаимодействие маг­нитного поля полюсов статора с током обмотки якоря создает вращаю­щий электромагнитный момент, который и приводит в движение якорь (ротор).

Читайте также:  Чем больше площадь р п перехода тем прямой ток

Статор (индуктор) машины постоянного тока (см. рис. 2.1,а) состоит из цилиндрической станины (корпуса), полюсов с обмоткой возбуждения и подшипниковых щитов.

Станина (рис.2.2,а), являющаяся основой неподвижной части машины, отливается или выполняется сварной из стали с боль­шой магнитной проницаемостью, так как играет роль и магнитопровода. На внутренней стороне станины располагаются симметрично полюсы. В машинах малой и средней мощностей к цилиндрической танине с торцов крепятся подшипниковые щиты с подшипниками. В мощных машинах подшипники иногда выносятся на отдельные стояки.

Основные полюсы с током в катушках обмотки (рис. (2.2,а и б) создают в машине магнитное поле. Каждый полюс является электромагнитом, состоит из стального сердечника с полюсным нако­нечником (башмаком) и катушечной обмотки из изолированного мед­ного провода (рис.2.2,в). Обмотка основных полюсов составляет обмотку возбуждения машины. Сердечник полюса для уменьшения по­терь на вихревые токи (возникающих в полюсном наконечнике из-за пульсации магнитной индукции при вращении якоря с зубчатой по­верхностью) набирается в виде пакета из листовой электротехнической стали толщиной 0,5-2 мм и стягивается шпильками. Полюсы крепятся к станине болтами или шпильками.

Добавочные полюсы (рис.2.2,г) устроены аналогичноно, но их сердечники чаще делаются из литой стали и имеют малую магнитную индукцию. Они устанавливаются симметрично между основными полюсами (см. рис.2.2,а), содержат обмотку из толстого изолированного провода (включается последовательно с якорем) и предназначаются для устранения искрения щеток .

Якорь (ротор) машины постоянного тока (см. рис. 2.1,б) состоит из стального вала, стального сердечника, обмотки и коллектора.

Сердечник якоря (рис. 2.3,а) представляет собой целиндрический барабан, в продольных наружных пазах которого раз­мещается обмотка якоря. Для уменьшения потерь на вихревые токи (во время работы якорь вращается в постоянном и неподвижном маг­нитном поле статора) сердечник набирается из изолированных штам­пованных листов электротехнической стали (рис. 2.3,б) толщиной 0,35 или 0,5 мм. Сердечник жестко закрепляется на валу (шпонкой или нажимными шайбами). Для лучшего охлаждения в сердечнике якоря имеются осевые вентиляционные каналы, а в машинах большой мощности — и радиальные каналы между пакетами сердечника. В машинах малой и средней мощностей применяется самовентиляция воздух прогоняется вентилятором, который насаживается на вал якоря (см. рис. 2.1,б), в машинах большой мощности используется независимое охлаждение от вентилятора с собственным приводом. В сердечниках якоря имеются пазы разнообразной формы: полузарытый грушевидный (рис. 2.3,б), и открытый прямоугольный (см. рис 2.3,в и г).

Коллектор (рис. 2.3,д) набирается из клинообразных медных пластин (ламелей), которые изолируются друг от друга миканитом. В прорезь выступа коллекторной пластины впаиваются два конца соседних секций обмотки якоря.

В машинах малой мощности с частотой вращения до 10 тыс. об/мин коллектор может иметь пластмассовый корпус (рис. 2.3,е). .

Обмотка якоря машины постоянного тока электрически замкнута (рис. 2.4,а). Однако, поскольку она выполнена симметричной, как и чередующиеся полюсы статора, алгебраическая сумма индуцированных в ней пульсирующих э. д. с. равна нулю и ток в контуре обмотки отсутствует. Для получения на обмотке якоря эквивалентной вы­прямленной э. д. с., которая является источником постоянного тока для внешней цепи, используются коллектор и щетки.

Работа коллектора наглядно может быть иллюстрирована схемой кольцевого якоря, показанной на рис. 2.4,а, где обмотка якоря изображена без кольцевого сердечника в виде шести витков-секций, со­единенных в замкнутый контур и связанных электрически с коллектором. Чтобы не затемнять схему, условно щетки с выводами для внешней цепи изображены на внутренней стороне пластин коллектора. Направление э. д. с. в витках обмотки якоря, вращающегося с угло­вой частотой относительно неподвижных полюсов и щеток, опреде­ляется правилом правой руки. Как следует из рис. 2.4,а, обмотка якоря делится щетками на две параллельные симметричные ветви, э. д. с. которых направлены встречно.

Для получения наибольшего возможного значения эквивалентной выпрямленной э. д. с. е во внешней цепи щетки устанавливаются на геометрической нейтрали, т. е. в таком положении, чтобы они соеди­нялись через коллекторные пластины с секциями обмотки, которые в данный момент проходят через геометрическую нейтраль и не пере­секают линии магнитного поля статора (е == 0). Как в верхней, так и в нижней ветви обмотки (см. рис. 2.4,и) пульсирующие переменные э. д. с. отдельных секций складываются. Следовательно, эквивалент­ная э. д. с. машины е между щетками равна сумме мгновенных э.д.с.ек всех секций верхней или нижней ветви обмотки:

и является пульсирующей, как показано на графиках э. д. с. (рис. 2.4,б).

При вращении якоря, благодаря симметрии машины, эквивалент­ная э. д. с. е между щетками пульсирует мало: выход из состава верх­ней ветви одной секции, например 1(е1) при правом вращении, одно­временно компенсируется переходом в эту ветвь противоположно рас­положенной секции 4 (е4) из нижней ветви. При этом их э. д. с. меня­ют направление, так как наводятся полями других полюсов.

В реальных машинах постоянного тока обмотка якоря насчиты­вает десятки секций (соответственно столько же пластин имеет кол­лектор) и пульсация выпрямленной э. д. с. становится практически незаметной. Поэтому э. д. с. якоря Е оказывается постоянной .

Как следует из рис. 2.4,а, в двухполюсной машине имеются две параллельных ветви в обмотке якоря, т. е. число пар параллельных ветвей а = 1. С увеличением числа полюсов (и щеток) в машине соот­ветственно возрастает и число пар параллельных ветвей обмотки яко­ря. Для четырехполюсной машины а = 2 (рис. 2.4,в).

Современные машины имеют барабанный якорь с двухслойной об­моткой, которая по’ типу может быть петлевой (параллельной), вол­новой (последовательной) и комбинированной, сочетающей в себе эле­менты двух первых.

Обмотка якоря составляется из отдельных секций, концы кото­рых припаиваются к пластинам коллектора. Секции имеют по два активных участка и могут состоять из одного, двух или нескольких витков (рис. 2.5). Секции обмотки укладываются в пазах ба­рабана якоря в два слоя (один участок вверху одного паза, другой — внизу другого паза) и в определенном порядке, чтобы при вращении якоря их участки всегда находились под разными полюсами статора (отстояли друг от друга примерно на одно полюсное деление т), т. е. чтобы индуцированные в них э. д. с. действовали согласно и склады­вались.

Для правильной укладки секций обмотки в пазах барабана якоря и соединения их с коллектором необходимо знать: полюсное деление, шаги обмотки по якорю и шаг по коллектору. Полюсное деление -это окружости якоря, приходящаяся на один полюс, или рас­стояние между осями соседних полюсов:

(2.2)

где D — диаметр якоря; 2р — число основных полюсов (р — числопар полюсов) машины.

Петлевая обмотка изображена на рис. 2.5. Она нама­тывается так, что конец ее последней секции соединяется с началом первой т. е. она всегда замкнута. При обходе замкнутой петлевой обмотки э д. с. в ее секциях изменяют свое направление под каждым полюсом.’Обмотка делится на число пар параллельных ветвей а равное числу пар основных полюсов машины (см. рис. 10.4), т. е. для петлевой обмотки всегда

a = p (2.3)

Такое деление обмотки фиксируется щетками на коллекторе. Число щеток равно числу основных полюсов машины. Щетки уста­навливаются на коллекторе по оси полюсов (при наличии добавочных полюсов) так, чтобы они соединялись с участками секции, которые в данный момент почти не пересекают силовые линии. Каждая щетка обычно перекрывает на коллекторе несколько пластин. Так как сек­ции в каждой параллельной ветви обмотки соединены последователь­но, то их э. д. с. складываются. В машине все параллельные ветви и их щетки соединяются параллельно, поэтому петлевая обмотка называет­ся еще параллельной.

Концы секций волновой обмотки присоединяются к пластинам коллектора, расстояние между которыми почти равно двойному полюсному делению. Эта обмотка несколько раз обходит якорь по окружности, прежде чем ее стержни займут все пазы и конец последней секции соединится с началом пер­вой (см. рис. 2.6,в и г). Индуцированные в участках секции переменные э. д. с. имеют согласованное направление.

В волновой обмотке, в отличие от петлевой, число параллельных ветвей всегда равно двум независимо от числа полюсов машины, т. е.,

a = 1 (2.4)

Так получается потому, что каждая половина секций, расположенных под основными «северными» N или «южными» 5 полюсами, образует лишь одну параллельную ветвь (см. рис. 2.6,г). Однако для умень­шения размеров коллектора и разгрузки щеток в машинах с волновой обмоткой число щеток берут равным числу основных полюсов 2р и соединяют их через одну в две цепи.

Комбинированная обмотка применяется в мощных машинах постоянного тока при напряжении свыше 600 В.

Источник

Adblock
detector