Что такое катушка в машине переменного тока

Что такое электромагнитная катушка?

Электромагнитные катушки

Электромагнитная катушка представляет собой электрический проводник, как правило провод, в форме катушки или другой подобной форме. Большинство этих катушек намотано на сердечник из железного материала.

Этот простой компонент может использоваться во множестве устройств, во многом благодаря уникальному взаимодействию между магнитными полями и электрическим током.

В системах обогрева устройство может представлять собой электромагнитную катушку, генерирующую тепло за счет индукции, или простой резистивный нагревательный элемент в форме катушки.

Назначение электромагнитных катушек

Чтобы соответствовать широкому спектру применений, существует множество типов электромагнитных катушек, различающихся по сечению, длине, диаметру катушки и материалам, на которые наматывается провод. Все разновидности электрических катушек могут быть адаптированы для удовлетворения конкретных требований.

Кроме того, помимо передачи тепла, звука или электричества, электрические катушки должны выполнять несколько различных функций. Например, электроника, автомобилестроение, медицина, компьютерная промышленность, бытовая техника и телекоммуникации в значительной степени полагаются на электрические катушки для обеспечения движения, регулирования потока и / или преобразования электрических токов.

Хотя это может показаться очень разными функциями, основные электромеханические принципы, используемые во всех электрических катушках, в целом одинаковы: проводящий металлический провод наматывается на изолятор, который может быть таким простым материалом, как картон, пластик или даже воздух.

схема электромагнитной катушки

Два конца провода обычно превращаются в электрические соединительные клеммы, называемые «ответвителями», которые затем подключаются к электрическому току. Когда ток проходит по спиральным проводам, сама катушка намагничивается (хотя в некоторых случаях она может размагничиваться).

Сила, создаваемая этим явлением, используется, в частности, такими компаниями, как производители электромагнитных клапанов, производители электродвигателей и поставщики аппаратов МРТ.

Применение электромагнитных катушек

Электромагнитные катушки используются в электротехнике в бесчисленных отраслях промышленности и в конкретных приложениях из-за важности взаимодействия между электрическими токами и магнитными полями во многих электрических устройствах.

Соответственно, электрические катушки встречаются почти во всех отраслях промышленности. В любой отрасли, использующей электричество, вероятно, есть по крайней мере несколько приложений, использующих электрические катушки, хотя они могут быть встроены в готовое оборудование и не являются предметом особой озабоченности компаний в каждой отрасли.

Отрасли с особыми сферами применения и уникальной потребностью в производстве обмоток электрических катушек или сборки катушек включают, но не ограничиваются:

  • Выработка энергии. Ключевой компонент при производстве любого электрического генератора или электродвигателя.
  • Тяжелая индустрия. Используется для различных двигателей и устройств управления, работающих в тяжелых условиях, а также в специальных электромагнитных устройствах.
  • Телекоммуникации. Используются как антенны, реле и т. д.
  • Медицина. Используется в различных устройствах формирования электромагнитных изображений и для определенных приложений, таких как биофильтры.
  • Компьютеры. Используется в магнитных запоминающих устройствах.
  • Бытовая техника. Многие нагревательные катушки используют одни и те же принципы электромагнитной индукции; там, где тепло было бы нежелательным побочным эффектом в других приложениях, это основная цель в различных домашних устройствах, таких как тепловые насосы или индукционные электрические плиты.
  • Автомобильная промышленность. Применяется для различных двигателей, генераторов. В частности, узел катушки, то есть катушки зажигания, катушка соленоида или реле стартера.
  • Контроль мощности. Используется в автоматических выключателях, контакторах, катушечных переключателях реле и различных других механизмах управления мощностью.

История

История электромагнитной катушки — это история электромагнитной науки в целом, так как именно с катушкой из проволоки и магнитом Майкл Фарадей впервые определил, что электрический ток может генерироваться с помощью магнитных сил. За прошедшие с тех пор годы практическое применение этих знаний проявилось во многих формах, хотя самым непосредственным ранним применением, конечно же, был электрический генератор Грамма в 1871 году.

электрический генератор Грамма

По мере того, как наше понимание и использование электромагнитных сил продвигалось вперед, появились и электромагнитные катушки. Для каждого потенциального применения бесчисленное количество раз изобретались, совершенствовались и модернизировались одна или несколько катушек с индивидуальными требованиями. Природа электрических катушек такова, что инновации в конструкции катушек присущи практически любому применению.

Конструкция электромагнитной катушки

Базовая конструкция электрической катушки может легко усложниться с добавлением дополнительных обмоток. Обмотка определяется как полный узел катушки с отводами и другими элементами. В то время как в где то может использоваться одна обмотка, то другие требуют добавления вторичных и даже третичных обмоток.

Электрический трансформатор, например, представляет собой электромагнитный компонент, который состоит из первичной и вторичной обмоток, что позволяет ему передавать электрическую энергию от одной электрической цепи к другой электрической цепи посредством магнитной муфты без движущихся частей.

электромагнитная катушка

Определенные как точки в проволочной катушке, которая состоит из открытого проводящего участка, отводы катушки могут различаться в основном по размеру, так же как и диаметр самой катушки. Когда катушка имеет большой диаметр, степень самоиндукции намного больше, и ток пытается течь внутри провода, а не снаружи, что может быть проблемой.

Кроме того, многослойные электрические катушки могут иметь проблемы с межслойной емкостью, которая относится к электрическому явлению, при котором сохраняется электрический заряд, поэтому форма катушки должна быть изменена.

В результате для многослойных электрических катушек спиральная форма является наиболее практичной формой. Величина самоиндукции намного больше, и ток пытается течь внутри провода, а не снаружи, что может быть проблемой.

Кроме того, многослойные электрические катушки могут иметь проблемы с межслойной емкостью, которая относится к электрическому явлению, при котором сохраняется электрический заряд, поэтому форма катушки должна быть изменена.

  • Проводящие материалы

Основа любой электрической катушки, включая простые резистивные нагревательные элементы — это проводящий материал, имеющий форму катушки. Чаще всего это медная проволока, но для этой роли можно использовать любой токопроводящий материал. Алюминий — популярная альтернатива.

  • Основные материалы

Для большинства электромагнитных катушек также необходимо учитывать материал сердечника. Обычно это какой-нибудь ферромагнитный материал, например, железо. Сердечник может представлять собой сплошной кусок, пучок проводов или любое количество других конфигураций.

Типы и формы электромагнитных катушек

В зависимости от используемого приложения, вы обычно будете довольно ограничены в общем стиле электрической катушки. Устройству, который требует статора, совместимого с постоянным током, не нужна катушка для электродвигателя переменного тока, так как ваши возможности, таким образом, будут довольно ограничены.

формы электромагнитных катушек

Специфика конструкции электрических катушек означает, что каждый небольшой аспект конфигурации может сильно повлиять на производительность конечного продукта. Например, на индуктивные свойства простой электромагнитной катушки напрямую влияют эти и многие другие факторы:

  • Количество обертываний
  • Площадь катушки
  • Длина катушки
  • Материал сердечника
  • Материал катушки

Несмотря на то, что в конструкции электрических катушек есть основное сходство, есть много способов, которыми каждая катушка может быть разработана специально для ее применения. Например, некоторые электрические катушки требуют защиты от суровых условий окружающей среды, таких как влажность, соль, масло и вибрация.

Чтобы защитить хрупкие катушки от агрессивных элементов, поскольку при длительном воздействии можно легко потерять проводимость, электрические катушки можно формовать или герметизировать.

В то время как формованные катушки заключены в пластиковые покрытия, которые герметизируют весь блок катушек, герметизированные катушки сделаны из проволоки, которая сама залита полимерно- эпоксидной смолой.

Другие типы электрических катушек, такие как катушки тороидального трансформатора, намотаны вокруг ферритовых колец и обернуты герметизирующей лентой для защиты окружающей среды.

катушки тороидального трансформатора

Один из наиболее распространенных типов электрических катушек, соленоидные катушки, иногда просто называют соленоидами. Часто используемые в качестве удаленного переключателя, соленоиды представляют собой катушки с током, которые становятся магнитными, когда ток проходит через катушку, которая обычно наматывается на железный сердечник.

Другие типы электромагнитных катушек включают:

катушки Роговского

  • катушки Гарретта, используемые в металлоискателях
  • катушки Роговского, используемые для измерения переменного тока (AC)
  • катушки Удина, которые являются катушками с разрушающим зарядом
  • катушки Браунбека, используемые в геомагнитных исследованиях.

Катушка Роговского

Оптимизация производительности электромагнитных катушек

Поскольку работа электрической катушки в конечном итоге очень проста, оптимизация производительности обычно сводится к точному согласованию конструкции катушки с применением. Это означает, что необходимо убедиться, что все совпадает, эффективно подходит и течет чисто, без потерь тепла, движения и т. д.

В зависимости от конкретного применения повышение производительности может означать замену катушки на лучшую конструкцию или замену компонентов, чтобы они лучше соответствовали вашей конструкции. катушка. Вам нужно будет решить, исходя из того, что вы пытаетесь сделать.

Конечно, чтобы сделать что-либо из этого, требуется понимание того, как работает ваша система, что делает аналитические инструменты и программное обеспечение идеальными для всех, кто пытается добиться максимальной производительности.

Вы можете обнаружить несколько поверхностных проблем без надлежащего оборудования, но для всего, что приближается к максимальной производительности, вам понадобится современное оборудование.

При выборе конструкции для вашей электрической катушки есть несколько других факторов, которые вы можете рассмотреть, прежде чем обращаться к компании, производящей обмотки. Если вы не уверены в чем-либо из них, не стесняйтесь спросить совета у любой компании, производящей обмотки, или спросите своего инженера-электрика.

Виды электромагнитных катушек

  • Катушки с воздушным сердечником (самонесущие катушки) — электромагнитные катушки, которые намотаны «вокруг воздуха» без сердечника, отсюда термины «воздушные катушки» и «самоподдерживаемые катушки».
  • Катушки с намоткой на шпульку — электромагнитный провод, намотанный на пластиковый сердечник или «шпульку». Пластиковые сердечники бывают разных размеров, а катушки, намотанные на бобину, могут быть пропитаны, отформованы или заклеены лентой, чтобы соответствовать различным медицинским устройствам, датчикам, реле и автомобилям.
  • Дроссельные катушки — представляют собой электрические катушки с низким сопротивлением и высокой индуктивностью, которые используются для блокировки высокочастотных переменных токов (AC) электричества, позволяя проходить низкочастотным постоянным токам (DC).

Дроссельные катушки

Катушка Тесла

  • Электрические катушки — альтернативное название электрических катушек, состоят из серии петель, изготовленных из токопроводящей металлической проволоки и намотанных на ферромагнитный сердечник.
  • Инкапсулированные катушки — это электрические катушки, заключенные в силиконовый, полиэфирный, жидкий или термоформованный эпоксидный кожух.
  • Катушки высокого напряжения — это электрические катушки, в которых используется напряжение выше, чем обычно считается безопасным.
  • Катушки зажигания — это электрические индукционные катушки, которые используются для преобразования более низких напряжений мощности в более высокие напряжения мощности, необходимые для зажигания свечей зажигания системы.
  • Пропитанные катушки — катушки, которые были сначала погружены в эпоксидную смолу или подвергнуты совместной экструзии перед намоткой. Ламинирующая эпоксидная смола изолирует проводящий электромагнитный провод от элементов, создавая блок, который эффективно защищен от погодных условий и грязи без затрат на инструменты, связанные с формованными катушками
  • Индукционные катушки — распространенный синоним электрических катушек, электромагнитные катушки используются для создания электродвижущей силы путем активации на магнетизм посредством электрических токов.
  • Магнитные катушки — которые также могут называться электромагнитными катушками или просто катушками, включают все типы электрических катушек, которые работают по принципу индукции.
  • Литые катушки — электромагнитные катушки, заключенные в термоформованные или отлитые под давлением пластиковые корпуса, защищающие катушку от погодных условий, грязи и вибрации.
  • Электромагнитные катушки — также называемые соленоидами, представляют собой трехмерные петли или катушки из проволоки, которые намотаны вокруг металлического сердечника и служат для создания магнитного поля при прохождении электрического тока через катушку.
  • Катушки, обмотанные лентой — катушки, обычно намотанные на сердечник, которые заключены в герметизирующую ленту для защиты электромагнитной катушки от погодных условий, грязи и вибрации. Бухты, намотанные лентой, не так эффективны в блокировании этих вредных элементов, как пропитанные или формованные бухты, но затраты на производство катушек, намотанных лентой, намного ниже
  • Катушка Тесла — электрическое устройство, которое генерирует чрезвычайно высокое напряжение, обычно с целью создания электрических дуг и эффектов молнии или для получения рентгеновских лучей.
Читайте также:  Оос по переменному току

Катушка Тесла

  • Тороиды / тороидальные катушки — медный провод, намотанный на ферритовое или железное кольцо в форме пончика. Ферритовый сердечник усиливает индуктивность катушки и может использоваться в транспортных средствах, аудио и источниках питания.
  • Катушки трансформатора — электромагнитные катушки, обычно пропитанные или ламинированные, которые используются для изменения напряжения входящего электрического тока, подавая ток обратно с той же частотой, но с другим напряжением.
  • Звуковые катушки — звуковая катушка, состоящая из обмотки, воротника и бобины, представляет собой своего рода электрическую катушку. Он прикрепляется к вершине диффузора громкоговорителя, где его цель — помочь усилить звук.

Электромагнитные катушки термины

  • Шпулька — пластиковый сердечник, вокруг которого часто наматываются электрические катушки.
  • Обмотка катушки — процесс наматывания электромагнитного провода вокруг сердечника или в самонесущую «воздушную» катушку; катушки могут быть однослойными или состоять из множества слоев. Для точных технических катушек часто требуется «прецизионная намотка».

Проводник — материал, часто металл (например, медь), который пропускает электрические токи за счет движения свободных электронов.

Электрический ток — Поток электрически заряженных электронов или ионов к положительному полюсу, вызванный путем введения электрического энергетического поля

  • Электромагнетизм — магнетизм, который создается электрическим током и зависит от него.
  • Поле катушки — представляет собой электромагнит используется для создания магнитного поля в электромагнитной машине, правило вращающейся электрической машины такой как двигатель или генератор. Он состоит из проволочной катушки, по которой течет ток.
  • Индуктивность — Электродвижущая сила или сила электромагнитной катушки (или цепи), создаваемая воздействием на катушку электрического тока.

    Преобразователь — электрическое устройство, преобразующее энергию из одной формы в другую.

  • Обороты — количество раз, когда электромагнитная катушка наматывается либо на ее сердечник, либо, в случае воздушных катушек, количество раз, когда катушка полностью закручивается
  • Источник

    Катушка индуктивности в цепи переменного тока

    Рассмотрим цепь, содержащую в себе катушку индуктивности , и предположим, что активное сопротивление цепи, включая провод катушки, настолько мало, что им можно пренебречь. В этом случае подключение катушки к источнику постоянного тока вызвало бы его короткое замыкание, при котором, как известно, сила тока в цепи оказалась бы очень большой.

    Иначе обстоит дело, когда катушка присоединена к источнику переменного тока. Короткого замыкания в этом случае не происходит. Это говорит о том. что катушка индуктивности оказывает сопротивление проходящему по ней переменному току .

    Каков характер этого сопротивления и чем оно обусловливается?

    Чтобы ответить ил этот вопрос, вспомним явление самоиндукции. Всякое изменение тока в катушке вызывает появление в ней ЭДС самоиндукции, препятствующей изменению тока. Величина ЭДС самоиндукции прямо пропорциональна величине индуктивности катушки и скорости изменения тока в ней. Но так как переменный ток непрерывно изменяется, то непрерывно возникающая в катушке ЭДС самоиндукции создает сопротивление переменному току.

    Для уяснения процессов, происходящих в цепи переменного тока с катушкой индуктивности, обратимся к графику. На рисунке 1 построены кривые линии, характеризующие соответственно тик в цепи, напряжение на катушке и возникающую в ней ЭДС самоиндукции. Убедимся в правильности произведенных па рисунке построений.

    Цепь переменного тока с катушкой индуктивности

    С момента t = 0, т. е. с начального момента наблюдения за током, он начал быстро возрастать, но по мере приближения к своему максимальному значению скорость нарастания тока уменьшалась. В момент, когда ток достиг максимальной величины, скорость его изменения на мгновение стала равной нулю, т. е. прекратилось изменение тока. Затем ток начал сначала медленно, а потом быстро убывать и по истечении второй четверти периода уменьшился до нуля. Скорость же изменения тока за эту четверть периода, возрастая от пуля, достигла наибольшей величины тогда, когда ток станет равным нулю.

    Рисунок 2. Характер изменений тока во времени в зависимости от величины тока

    Из построений на рисунке 2 видно, что при переходе кривой тока через ось времени увеличение тока за небольшой отрезок времени t больше, чем за этот же отрезок времени, когда кривая тока достигает своей вершины.

    Следовательно, скорость изменения тока уменьшается по мере увеличения тока и увеличивается по мере его уменьшения, независимо от направления тока в цепи.

    Очевидно, и ЭДС самоиндукции в катушке должна быть наибольшей тогда, когда скорость изменения тока наибольшая, и уменьшаться до нуля, когда прекращается его изменение. Действительно, на графике кривая ЭДС самоиндукции e L за первую четверть периода, начиная от максимального значения, упала до нуля (см. рис. 1).

    На протяжении следующей четверти периода ток от максимального значения уменьшался до нуля, однако скорость его изменения постепенно возрастала и была наибольшей в момент, когда ток стал равным нулю. Соответственно и ЭДС самоиндукции за время этой четверти периода, появившись вновь в катушке, постепенно возрастала и оказалась максимальной к моменту, когда ток стал равным нулю.

    Однако направление свое ЭДС самоиндукции изменила на обратное, так как возрастание тока в первой четверти периода сменилось во второй четверти его убыванием.

    Цепь с индуктивностью

    Цепь с индуктивностью

    Продолжив дальше построение кривой ЭДС самоиндукции, мы убеждаемся в том, что за период изменения тока в катушке и ЭДС самоиндукции совершит в ней полный период своего изменения. Направление ее определяется законом Ленца: при возрастании тока ЭДС самоиндукции будет направлена против тока (первая и третья четверти периода), а при убывании тока, наоборот, совпадать с ним по направлению (вторая и четвертая четверти периода).

    Таким образом, ЭДС самоиндукции, вызываемая самим переменным током, препятствует его возрастанию и , наоборот, поддерживает его при убывании .

    Катушка индуктивности в цепи переменного тока

    Обратимся теперь к графику напряжения на катушке (см. рис. 1). На этом графике синусоида напряжения на зажимах катушки изображена равной и противоположной синусоиде ЭДС самоиндукции. Следовательно, напряжение на зажимах катушки в любой момент времени равно и противоположно ЭДС самоиндукции, возникающей в ней. Напряжение это создается генератором переменного тока и идет на то, чтобы погасить действие в цепи ЭДС самоиндукции.

    Таким образом, в катушке индуктивности, включенной в цепь переменного тока, создается сопротивление прохождению тока. Но так как такое сопротивление вызывается в конечном счете индуктивностью катушки , то и называется оно индуктивным сопротивлением.

    Индуктивное сопротивление обозначается через X L и измеряется, как и активное сопротивление, в омах.

    Индуктивное сопротивление цепи тем больше, чем больше частота источника тока, питающего цепь, и чем больше индуктивность цепи. Следовательно, индуктивное сопротивление цепи прямо пропорционально частоте тока и индуктивности цепи; определяется оно по формуле X L = ω L , где ω — круговая частота, определяемая произведением 2π f . — индуктивность цепи в гн.

    Закон Ома для цепи переменного тока, содержащей индуктивное сопротивление, звучит так: величина тока прямо пропорциональна напряжению и обратно пропорциональна индуктивному сопротивлению це п и , т. е. I = U / X L , где I и U — действующие значения тока и напряжения, а X L — индуктивное сопротивление цепи.

    Рассматривая графики изменения тока в катушке. ЭДС самоиндукции и напряжения на ее зажимах, мы обратили внимание на то, что изменение этих в еличин не совпадает по времени. Иначе говоря, синусоиды тока, напряжения и ЭДС самоиндукции оказались для рассматриваемой нами цепи сдвинутыми по времени одна относительно другой. В технике переменных токов такое явление принято называть сдвигом фаз .

    Если же две переменные величины изменяются по одному и тому же закону (в нашем случае по синусоидальному) с одинаковыми периодами, одновременно достигают своего максимального значения как в прямом, так и в обратном направлении, а также одновременно уменьшаются до нуля, то такие переменные величины имеют одинаковые фазы или, как говорят, совпадают по фазе.

    В качестве примера на рисунке 3 приведены совпадающие по фазе кривые изменения тока и напряжения. Такое совпадение фаз мы всегда наблюдаем в цепи переменного тока, состоящей только из активного сопротивления.

    В том случае, когда цепь содержит индуктивное сопротивление, фазы тока и напряжения, как это видно из рис. 1 не совпадают, т. е. имеется сдвиг фаз между этими переменными величинами. Кривая тока в этом случае как бы отстает от кривой напряжения на четверть периода.

    Следовательно, при включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между током и напряжением, причем ток отстает по фазе от напряжения на четверть периода . Это значит, что максимум тока наступает через четверть периода после того, как наступил максимум напряжения.

    Читайте также:  Видеоурок по физике 8 класс перышкин действие электрического тока

    ЭДС же самоиндукции находится в противофазе с напряжением на катушке, отставая, в свою очередь, от тока на четверть периода. При этом период изменения тока, напряжения, а также и ЭДС самоиндукции не меняется и остается равным периоду изменения напряжения генератора, питающего цепь. Сохраняется также и синусоидальный характер изменения этих величин.

    Рисунок 3. Совпадение по фазе тока и напряжения в цепи с активным сопротивлением

    Выясним теперь, каково отличие нагрузки генератора переменного тока активным сопротивлением от нагрузки его индуктивным сопротивлением.

    Когда цепь переменного тока содержит в себе лишь одно активное сопротивление, то энергия источника тока поглощается в активном сопротивлении, нагревая проводник.

    Катушка индуктивности в цепи переменного тока

    Когда же цепь не содержит активного сопротивления (мы условно считаем его равным нулю), а состоит лишь из индуктивного сопротивления катушки, энергия источника тока расходуется не на нагрев проводов, а только на создание ЭДС самоиндукции, т. е. она превращается в энергию магнитного поля. Однако переменный ток непрерывно изменяется как по величине, так и по направлению, а следовательно, и магнитное поле катушки непрерывно изменяется в такт с изменением тока. В первую четверть периода, когда ток возрастает, цепь получает энергию от источника тока и запасает ее в магнитном поле катушки. Но как только ток, достигнув своего максимума, начинает убывать, он поддерживается за счет энергии, запасенной в магнитном поле катушки посредством ЭДС самоиндукции.

    Таким образом, источник тока, отдав в течение первой четверти периода часть своей энергии в цепь, в течение второй четверти получает ее обратно от катушки, выполняющей при этом роль своеобразного источника тока. Иначе говоря, цепь переменного тока, содержащая только индуктивное сопротивление, не потребляет энергии : в данном случае происходит колебание энергии между источником и цепью. Активное же сопротивление, наоборот, поглощает в себе всю энергию, сообщенную ему источником тока.

    Говорят, что катушка индуктивности, в противоположность омическому сопротивлению, не активна по отношению к источнику переменного тока, т. е. реактивна . Поэтому индуктивное сопротивление катушки называют также реактивным сопротивлением .

    Кривая нарастания тока при замыкании цепи, содержащей индуктивность
    Кривая нарастания тока при замыкании цепи, содержащей индуктивность — переходные процессы в электрических цепях.

    Источник

    Катушка индуктивности. Устройство и принцип работы.

    Катушка индуктивности

    Приветствую всех на нашем сайте!

    Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

    Устройство и принцип работы катушки индуктивности.

    Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку 🙂 То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

    Катушки индуктивности

    Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

    Магнитное поле проводника с током

    А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

    Магнитное поле катушки индуктивности

    В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

    Давайте разберемся, что за величину входят в это выражение:

    • \mu_0 – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению: \mu_0 = 4 \pi \cdot 10^<-7>\medspace\frac <Гн>
    • \mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
    • S – площадь поперечного сечения катушки
    • N – количество витков
    • l – длина катушки

    Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

    С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

    Катушка индуктивности в цепи постоянного тока.

    Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

    Катушка индуктивности в цепи постоянного тока

    Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

    Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

    Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

    Напряжение и ток катушки индуктивности

    На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

    Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

    Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

    Напряжение и ток в катушке

    После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

    Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

    На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

    Катушка индуктивности в цепи переменного тока.

    Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

    Катушка индуктивности в цепи переменного тока

    Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

    Зависимость тока и ЭДС самоиндукции в катушке в цепи переменного тока

    Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

    Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

    Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

    Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: \varepsilon i > 0, участок 3-4: \varepsilon > 0, i w – круговая частота: w = 2 \pi f . [/latex]f[/latex] – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

    Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u ? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

    Построим на одном графике зависимости тока и напряжения в цепи от времени:

    Сдвиг фаз при включении катушки индуктивности

    Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

    Вот и с включением катушки в цепь переменного тока мы разобрались!

    На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

    Источник

    Катушка индуктивности, дроссель.

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Катушка индуктивности (inductor. -eng)– устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник. При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электро- технике.

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания & etc. В последнее время, применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.

    Как работает дроссель.

    В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели — индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества — значительная экономия электроэнергии и отсутствие сильного нагрева.

    Каково устройство дросселя, на чем основан принцип его работы?

    Устроен дроссель очень просто — это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум — латинское название железа), в том или ином количестве.

    Принцип работы дросселя основан на свойстве, присущем не только катушкам но и вообще, любым проводникам — индуктивности. Это явление легче всего понять, поставив несложный опыт.

    Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Без дросселя, схема будет работать как обычно — цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится.

    Присмотревшись, можно заметить, что во первых, лампа загорается не сразу, а с некоторой задержкой, во вторых — при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит потому что, в момент включения ток в цепи возрастает не сразу — этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля. Эту способность и называют — индуктивностью.

    Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности — 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С. используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется — Э.Д.С. самоиндукции.

    Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель — не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется — возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется — реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого — магнитной проницаемостью, а так же его формы.

    Магнитная проницаемость — число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале — в вакууме.)

    Т. е — магнитная проницаемость вакуума принята за еденицу.

    В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.

    В электромагнитах реле — сердечники подковоообразной и цилиндрической формы из специальных сталей.

    Для намотки дросселей и трансформаторов используют замкнутые сердечники — магнитопроводы Ш — образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц — различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.

    У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.

    Как работает трансформатор.

    Рассмотрим работу дросселя собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно — нет.

    Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться — перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее — номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.

    Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить — наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.

    Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной. а обмотка, с которой трансформированое напряжение снимается — вторичной .

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Отношение числа витков вторичной(Np ) и первичной (Ns ) обмоток равно отношению соответствующих им напряжений — Up (напряжение первичной обмотки) и Us (напряжение вторичной обмотки).

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Таким образом, устройство состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока можно использовать для изменения питающего напряжения — трансформации. Соответственно, оно так и называется — трансформатор .

    Если подключить к вторичной обмотке какую-либо нагрузку, в ней возникнет ток(Is ). Это вызовет пропорциональное увеличение тока(Ip ) и в первичной обмотке. Будет верным соотношение:

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Трансформаторы могут применяться как для преобразовния питающего напряжения, так и для развязки и согласования усилительных каскадов. При работе с трансформаторами необходимо обратить внимание на ряд важных параметров, таких как:

    1. Допустимые токи и напряжения для первичной и вторичной обмоток.

    2. Максимальную мощность трансформатора — мощность которая может длительное время передаваться через него, не вызывая перегрева обмоток.

    3. Диапазон рабочих частот трансформатора.

    Параллельный колебательный контур.

    Если соединить катушку индуктивности и конденсатор — получится очень интересный элемент радиотехники — колебательный контур. Если зарядить конденсатор или навести в катушке Э.Д.С. используя электромагнитное поле — в контуре начнут происходить следующие процессы: Конденсатор разряжаясь, возбуждает электромагнитное поле в катушке индуктивности. Когда заряд истощается, катушка индуктивности возвращает запасенную энергию обратно в конденсатор, но уже с противоположным знаком, за счет Э.Д.С. самоиндукции. Это будет повторяться снова и снова — в контуре возникнут электромагнитные колебания синусоидальной формы. Частота этих колебаний называется резонансной частотой контура, и зависит от величин емкости конденсатора(С), и индуктивности катушки (L).

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Параллельный колебательный контур обладает очень большим сопротивлением на своей резонансной частоте. Это позволяет использовать его для частотной селекции(выделения) в входных цепях радиоаппаратуры и усилителях промежуточной частоты, а так же — в различных схемах задающих генераторов.

    Цветовая и кодовая маркировка индуктивностей.

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования.

    Первые две цифры указывают значение в микрогенри (мкГн), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается —допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.

    D=±0,3 нГн; J=±5%; К=±10%; M=±20%

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Индуктивности маркируются непосредственно в микрогенри (мкГн). В таких случаях маркировка 680К будет означать не 68 мкГн ±10%, как в случае А, а 680 мкГн ±10%.

    Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

    Как измерить индуктивность катушки, дросселя.

    Источник

    Поделиться с друзьями
    Блог электрика
    Adblock
    detector