Меню

Что такое электрическая цепь переменного тока электротехника



Электрические цепи переменного тока

Переменный ток получил гораздо большее распространение в промышленности и в быту, чем постоянный, так как упрощается конструкция электродвигателей, а синхронные генераторы могут быть выполнены на значительно большие мощности и более высокие напряжения, чем генераторы постоянного тока. Переменный ток позволяет легко изменять величину напряжения с помощью трансформаторов, что необходимо при передаче электроэнергии на большие расстояния.

Электрический ток, возникающий под действием э. д. с, которая изменяется по синусоидальному закону, называют переменным. По существу, переменный ток — это вынужденные колебания тока в электрических цепях.

Амплитудой переменного тока называется наибольшее значение, положительное или отрицательное, принимаемое переменным током.

Периодом называется время, в течение которого происходит полное колебание тока в проводнике.

Частота — величина, обратная периоду.

Фазой называется угол или , стоящий под знаком синуса. Фаза характеризует состояние переменного тока с течением времени. При t=0 фаза называется начальной.

Периодический режим: . К такому режиму может быть отнесен и синусоидальный:

— амплитуда;

— начальная фаза;

— угловая скорость вращения ротора генератора.

При f=50Гц T= 1/f=0,02 с, 314рад/с.

График синусоидальной функции называется волновой диаграммой.

Расчет цепей переменного тока с использованием мгновенных значений тока, напряжения и ЭДС требует громоздкой вычислительной работы. Поэтому изменяющиеся непрерывно во времени токи, напряжения и ЭДС заменяют эквивалентными во времени величинами.

При расчете электрических цепей синусоидальную функцию выражают по формуле Эйлера через экспоненциальные функции:

— поворотный множитель;

— комплексная амплитуда напряжения;

— сопряженная комплексная амплитуда напряжения.

Таким образом, синусоидальное напряжение можно представить на комплексной плоскости вращающимся вектором. Тогда амплитудное значение напряжения будет представлять собой модуль или длину вектора напряжения.

Вектор напряжения на комплексной плоскости

Так как в цепи с синусоидальным напряжением ток тоже будет подчиняться этому закону, то аналогично можно записать

— комплексная амплитуда тока; *

— сопряженная комплексная амплитуда тока.

Разделив напряжение на ток, получим закон Ома в комплексном виде:

При напряжение на сопротивлении согласно закону Ома . Таким образом, следует отметить, что на активном сопротивлении напряжение и ток совпадают по фазе и (см. рисунок).

Кривые напряжения и тока в активном сопротивлении

Величину переменного напряжения или тока можно оценить значением амплитуды или средним значением за полупериод или действующим значением. При изменении напряжения или тока по закону синуса среднее значение напряжения определяется:

При большой частоте вращения ротора генератора, т. е. при большой частоте колебаний э. д. с. и силы тока, измерять их амплитуды на практике крайне неудобно. По этой причине ввели величины, названные действующими значениями э. д. с, силы тока и напряжения.

Действующим значением силы переменного тока называют силу такого постоянного тока, при прохождении которого по той же цепи и за то же время выделяется такое же количество теплоты, как и при прохождении переменного тока.

При синусоидальном законе действующие значения тока и напряжения:

Приборы электромагнитной системы, применяемые для измерений напряжений и токов на переменном токе, регистрируют действующие значения. Соответственно градуируются и шкалы этих приборов.

Ток, протекающий через индуктивность L (рис. 7), меняется по закону синуса /’ = Im sin(co/ + у;).

Кривые напряжения и тока в индуктивном сопротивлении

Напряжение на индуктивности определяется выражением

-индуктивное сопротивленияе

Индуктивное сопротивление выражают в омах, оно играет роль сопротивления в цепи переменного тока с катушкой индуктивности.

В идеальной индуктивности ток отстает от напряжения на 90°.

Если напряжение на емкости меняется по закону синуса , то

-емкостное сопротивление.

Емкостное сопротивление выражается в омах, оно играет роль сопротивления в цепи переменного тока с конденсатором.

Кривые напряжения и тока в емкостном сопротивлении

В идеальной емкости ток опережает напряжение на 90°

Режим — состояние электрической цепи переменного тока описывается дифференциальными уравнениями, представляющими собой уравнения с постоянными коэффициентами и правой частью, например:

Из курса высшей математики известно, что общее решение такого уравнения может быть найдено методом наложения принужденного и свободного режимов:

— ток принужденного режима при di/dt=0

— ток свободного режима.

Свободные процессы исследуются с целью определения устойчивости системы. В устойчивой системе процессы должны затухать. Принужденный и свободный режимы в сумме определяют процессы, которые называются переходными, т.е. осуществляется переход от одного установившегося режима к другому.

При установившемся режиме ток и напряжение сохраняют в течение длительного времени амплитудные значения.

В цепях постоянного тока токи и напряжения остаются неизменными, а в цепях переменного тока остаются неизменными кривые изменения токов и напряжений.

Мощность цепи переменного тока

В периодическом синусоидальном режиме

Используя известное тригонометрическое преобразование

и обозначив , получим

Среднее за период значение гармонической функции удвоенной частоты равно нулю.

Измерение мгновенного значения мощности переменного тока затруднено из-за сравнительно большой частоты колебаний (v = 50 Гц). Поэтому на практике принято пользоваться средней мощностью тока. Средняя мощность — это отношение энергии, потребляемой за один период, к периоду:

— энергетическое значение коэффициента мощности,

Потребляемая на участке цепи с резистором средняя мощность получила название активной мощности. Она необратимо преобразуется в джоулеву теплоту и другие виды энергии. Мощность, потребляемую на участках цепи с емкостным и индуктивным сопротивлениями, называют реактивной мощностью.

При передаче электрической энергии по цепи переменного тока ее необратимые преобразования происходят только на тех участках цепи, которые содержат резисторы. Такие участки цепи называют активной нагрузкой. На активной нагрузке электроэнергия превращается в теплоту или механическую работу.

Участок цепи с индуктивностью или емкостью называют реактивной нагрузкой. На участках цепи, которые состоят из чистых емкостных или индуктивных сопротивлений, электроэнергия не потребляется. В цепи с реактивными нагрузками происходит только перекачка энергии от генератора к нагрузке и обратно с неизбежными потерями в подводящих проводах.

Читайте также:  Что нужно сделать в первую очередь если человек попал под действие электрического тока

При заданных Р и U ток является функцией cosj. Потери мощности на сопротивлении

В цепи с резистором j=0.

Коэффициент мощности cosj показывает, какая часть полной мощности, вырабатываемой генератором и передаваемой нагрузке, необратимо используется нагрузкой. Он играет важную роль в электротехнике. В самом деле, если в цепи имеется значительный сдвиг по фазе между колебаниями тока и э. д. с, то коэффициент мощности мал и нагрузка потребляет от генератора малую активную мощность. Вместе с тем генератор должен вырабатывать полную мощность S. Эту же мощность должен отдавать генератору первичный двигатель. Таким образом, при низком коэффициенте мощности нагрузка потребляет лишь часть энергии, которую вырабатывает генератор. Оставшаяся часть энергии перекачивается периодически от генератора к потребителю и обратно и рассеивается в линиях электропередачи.

Максимально благоприятные условия передачи электроэнергии создаются в цепи, работающей в режиме резонанса. В самом деле, при приближении к резонансу амплитуда силы тока оказывается максимальной и коэффициент мощности стремится к единице. В этом случае активная мощность приближается к полной мощности, т. е. достигает максимума.

Повышение к. м. является важной народнохозяйственной задачей, от решения которой зависит эффективность использования вырабатываемой электроэнергии.

Уменьшение к. м. в промышленных цепях происходит в основном за счет содержащихся в них трансформаторов и асинхронных электродвигателей, имеющих значительные индуктивные сопротивления. Поэтому повысить к. м. при таких нагрузках можно путем подключения параллельно основной цепи компенсирующих конденсаторов, позволяющих приблизиться к режиму резонанса токов.

С целью повышения к. м. и экономии электроэнергии не следует допускать холостого хода (т. е. работы без нагрузки) трансформаторов и асинхронных электродвигателей, ибо в этом случае они представляют собой чисто индуктивные сопротивления и вызывают дополнительные потери мощности.

Коэффициент мощности (к. м.) ни в коем случае нельзя путать с коэффициентом полезного действия (к. п. д.). Так, например, при определенном соотношении емкости и индуктивности коэффициент мощности в данной цепи может оказаться равным единице. Коэффициент же полезного действия цепи всегда меньше единицы.

Мощность цепи переменного тока

Мощность в активном сопротивлении

Мгновенное значение мощности для цепи с резистором:

Из рисунка видно, что потребляемая резистором мгновенная мощность остается все время положительной, но пульсирует с удвоенной по отношению к силе тока и э. д. с. частотой.

Действующее значение мощности:

Активная мощность в цепи с идеальной катушкой индуктивности и конденсатором равна 0. Реактивная мощность определяется выражением:

Аналогично можно проделать для цепи с идеальным конденсатором:

В произвольной цепи переменного тока потребляемая одновременно активной и реактивной нагрузками суммарная мощность

Но так как , следовательно, . Мы приходим к выводу, что суммарная средняя мощность, потребляемая полной цепью переменного тока, равна активной мощности.

где S — полная мощность, вырабатываемая генератором переменного тока, ВА;

a — сдвиг по фазе между колебаниями э. д. с. и силы тока.

Источник

Цепи переменного тока (краткая теория)

date image2017-11-01
views image7612

facebook icon vkontakte icon twitter icon odnoklasniki icon

Переменным называется ток, который с течением времени изменяет свою величину или направление. В промышленности наибольшее распространение получил синусоидальный переменный ток, то есть ток, величина которого изменяется со временем по закону синуса или косинуса. Синусоидальный переменный ток имеет целый ряд преимуществ перед постоянным током, что и объясняет его использование в промышленности и в быту.

В цепях переменного тока, кроме процессов нагрева проводов имеются дополнительные процессы, обусловленные изменяющимися магнитными и электрическими полями. Изменение этих полей оказывает влияние на величину и форму тока в цепи и может приводить к дополнительным потерям энергии. Величина и форма кривой силы тока зависят не только от параметров электрической цепи, но и от частоты и формы кривой приложенного напряжения. Поэтому анализ явлений, происходящих в цепях переменного тока, вследствие этого усложняется.

Рассмотрим электрическую цепь с последовательно включёнными катушкой индуктивностью L, конденсатора ёмкостью C и резистором с активным сопротивлением R (рис. 10.1) к источнику переменного тока, напряжение которой меняется по закону . В цепи возникает переменный ток, меняющийся по закону где φ — сдвиг фаз между током и напряжением. При этом связь между током Im и напряжением Um, согласно закону Ома, будет

, (10.1)

где — реактивное сопротивление, — индуктивное сопротивление, — емкостное сопротивление, — полное сопротивление или импеданс.

Рис.10.1. Электрическая цепь с последовательно включёнными катушкой индуктивности L, конденсатором C и резистором R

Этот ток вызывает падение напряжения на элементах цепи L, C, R:

, (10.2)

, (10.3)

. (10.4)

По второму закону Кирхгофа общее напряжение равно сумме падений напряжений на участках (элементах) цепи , и это соотношение иллюстрируется на векторной диаграмме (рис.10.2,а)). (На векторной диаграмме параметры рассматриваются как векторы, хотя знак вектора часто не ставится).

Из векторной диаграммы для сопротивлений (рис. 10.2.б)) видно, при и . Это соответствует условию последовательного резонанса. При этом и . Отсюда — формула Томсона, соответствует периоду собственных колебаний контура.

Рис. 10.2. Векторные диаграммы напряжений (а) и сопротивлений (б)

Мощность в цепи переменного тока со временем меняется по закону

.

Среднее значение мощности будет определяться соотношением

,

.

Выполняя усреднение по периоду колебаний T=2π/ω

,

с учётом значений интегралов

,

,

.

Таким образом, среднее значение мощности будет определяться соотношением

, (5)

Величины и соответственно называются эффективными, или действующими значениями тока и напряжения, а cosφназывается коэффициентом мощности. Большинство электроизмерительных приборов (амперметры, вольтметры) измеряют эффективные значения.

Зависимость мощности от cosφ необходимо учитывать при проектировании линий электропередачи на переменном токе. Если питаемые нагрузки имеют большое реактивное сопротивление, то cosφ может быть гораздо меньше единицы.

Для более рационального использования мощности станции надо стремиться сделать нагрузку такой, чтобы cosφ = 1. Для этого достаточно обеспечить равенство индуктивного и ёмкостного сопротивлений. Однако на практике в масштабе промышленного предприятия добиться этого весьма трудно, хотя часто значение cosφ доводят до 0,9—0,95. Повышение cosφ осуществляется путём подключения конденсаторов, что не совсем выгодно. В большинстве случаев применяют электрические машины (синхронные), работающие в «ёмкостном» режиме. Повышение cosφ является важной задачей. Так, повышение cosφ в энергосистемах всего лишь на 0,01 может дать экономию электроэнергии более 500 млн. кВт·ч в год.

Читайте также:  Электрический ток в человеке картинки

Выполнение работы

Электрическая схема установки показана на рис. 10.3. Параметры установки: С1=1 мкФ, С2=5 мкФ, С3=10 мкФ, R=710 Ом.

Рис. 10.3. Электрическая схема установки

Выполните измерения в следующем порядке

  1. Подключите миллиамперметр к соответствующим клеммам цепи (рис.10.3).
  2. Включите тумблер К (загорится лампочка на передней панели )
  3. Установите переключатель “Пк” в положение «1» и запишите показания миллиамперметра в таблицу 1.
  4. Подключая вольтметр к клеммам «C» «L» «R», запишите показания в табл 1.
  5. Подключитt вольтметр между клеммами «C» «L» и запишите показания в таблицу 1.
  6. Измерьте входное напряжение Uвх.
  7. Проделайте пункты 3-5 для положений переключателя «2» и «3».
  8. По полученным данным для каждой системы измерений постройте векторную диаграмму напряжений. Сравните показания вольтметра в случае «C — L» с разностью показаний вольтметра на «С» и «L». Обратите внимание на знак.
  9. Вычислите xc конкретного случая по формуле

  1. Вычислите полное сопротивление (импеданс) Z.
  2. Исходя из полученных данных и векторной диаграммы вычислите индуктивность дросселя L (Гн)

.

(преобразуйте векторную диаграмму по напряжениям в векторную диаграмму по сопротивлениям (рис.10.2))

  1. Из полученных результатов определите значение cosφ (каков знак + или -). Объясните результат.
  2. Вычислите мощность (Вт). Для каждого из полученных значений мощности рассчитайте относительную погрешность ε.
С, мкФ I, mА UC, В UL, В UR, В ULC, В Uвх, B Z, Ом L, Гн cosφ P, Вт ε, %

Контрольные вопросы

  1. При каком сердечнике активное сопротивление катушки будет большим: при сплошном металлическом или набранном из изолированных металлических пластин? Объяснить ответ.
  2. Чему равняется сдвиг фаз между током и напряжением, если цепь состоит из:
    а) чисто активного сопротивления?
    б) чисто индуктивного сопротивления?
  3. Когда наблюдается резонанс? Используя результаты экспериментов, определить частоту резонанса.

Лабораторная работа № 2.8
Свободные механические колебания

Цель работы: изучение механических гармонических, ангармонических и затухающих колебаний с помощью математического и физического маятников.

Приборы и принадлежности: физические маятники – шары на нитях, секундомер, линейка.

Литература: [1-4]

План работы:

1. Изучение гармонических колебанийфизического и математического маятников.

2. Изучение ангармонических колебанийфизического маятника.

3. Изучение затухающих колебаний.

4. Измерение периода малых колебаний математического маятника и определение ускорения свободного падения.

5. Исследование зависимости периода колебаний маятника от амплитуды.

6. Исследование затухающих колебаний маятника.

7. Изучение темы «Свободные колебания математического маятника» с помощью программы «Открытая физика».

Источник

Переменный (синусоидальный) ток и основные характеризующие его величины.

ads

Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Синусоидальный ток

Рисунок 1

Формула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Источник

Цепи переменного тока. Определение и основные характеристики.

Цепи переменного тока

Приветствую всех на нашем сайте в рубрике “Основы электроники”!

В предыдущей статье мы обсудили понятия тока, напряжения и сопротивления, но все наши примеры были связаны только с постоянным током, поэтому сегодня мы будем разбираться с переменным 🙂 Итак, переходим от слов к делу!

Давайте для начала выясним какова же область применения цепей переменного тока. А область довольно-таки обширна! Смотрите сами – все бытовые электронные приборы, компьютеры, телевизоры и т. д. являются потребителями переменного тока, соответственно, все розетки в нашем доме работают именно с переменным током.

Почему же для данных целей не используется постоянный ток? На этот вопрос можно дать сразу несколько ответов. Во-первых, гораздо проще преобразовать напряжение переменного тока одной величины в напряжение другой величины, чем произвести аналогичные “махинации” с постоянным током. Данные преобразования осуществляются при помощи трансформаторов, о которых мы обязательно поговорим в рамках нашего курса.

Читайте также:  Момент асинхронного электродвигателя от тока

Зачем вообще нужно изменять напряжение переменного тока? С этим тоже все просто и логично. Давайте для примера рассмотрим ситуацию передачи сигнала с электростанции в отдельно взятый дом.

Распространение переменного тока

Как видите, с электростанции “выходит” высоковольтное переменное напряжение, затем оно преобразуется в низковольтное (к примеру, 220В), а затем уже по низковольтным линиям передачи достигает своей цели – а именно потребителей. Возникает вопрос – к чему такие сложности? Что же, давайте разберемся…

Задачей электростанции является генерировать и передавать сигнал большой(!) мощности (ведь потребителей много). Поскольку величина мощности прямо пропорциональна и значению тока и значению напряжения, то для достижения необходимой мощности нужно, соответственно, либо увеличивать ток, либо напряжение сигнала. Увеличивать значение тока, протекающего по проводам довольно проблематично, ведь чем больше ток, тем больше должна быть площадь поперечного сечения провода. Это связано с тем, что чем меньше сечение проводника, тем больше его сопротивление (вспоминаем формулу из статьи про сопротивление). Чем больше сопротивление, тем больше будет нагреваться провод и, соответственно, рано или поздно он прогорит.

Таким образом, использование токов огромной величины нецелесообразно, да и экономически невыгодно (нужны “толстые” провода). Поэтому мы логически приходим к выводу, что абсолютно необходимо передавать сигнал с большим значением напряжения. А поскольку в домах у нас требуются низковольтные цепи переменного тока, то сразу же становится понятно, что преобразование напряжения просто неизбежно 🙂 А из этого и вытекает преимущество переменного тока над постоянным (именно для данных целей), поскольку как мы уже упомянули – преобразовывать напряжение переменного тока на порядок легче, чем постоянного.

Ну и еще одно важное преимущество переменного тока – его просто проще получать. И раз уж мы вышли на эту тему, то давайте как раз-таки и рассмотрим пример генератора переменного тока…

Генератор переменного тока.

Итак, генератор – это электротехническое устройство, задачей которого является преобразование механической энергии в энергию переменного тока. Давайте рассмотрим пример:

Генератор

На рисунке мы видим классический пример генератора переменного тока. Давайте разбираться, как же он работает и откуда тут появляется ток!

Но для начала пару слов об основных узлах. В состав генератора входит постоянный магнит (индуктор), создающий магнитное поле. Также может использоваться электромагнит. Вращающаяся рамка носит название якоря. В данном случае якорь генератора имеет только одну обмотку/рамку. Именно эта обмотка и является цепью переменного тока, то есть с нее и снимается переменный ток.

Переходим к принципу работы генератора переменного тока.

Магнит создает поле, вектор индукции которого B изображен на рисунке. Проводящая рамка площадью S равномерно вращается вокруг своей оси с угловой скоростью w. Поскольку рамка вращается, угол между нормалью к плоскости рамки и магнитным полем постоянно меняется. Запишем формулу для его расчета:

Здесь \alpha_0 – это угол в начальный момент времени (t = 0). Примем его равным 0, таким образом:

Вспоминаем курс физики и записываем выражение для магнитного потока, проходящего через рамку:

Величина магнитного потока, как и угол \alpha зависит от времени. Согласно закону Фарадея при вращении проводника в магнитном поле в нем (в проводнике) возникает ЭДС индукции, которую можно вычислить по следующей формуле:

Эта ЭДС и используется для создания тока в цепи (возникает разность потенциалов и, соответственно, начинает течь ток). Как уже видно из формулы – зависимость тока от времени будет иметь синусоидальный характер:

Переменный ток

Именно такой сигнал (синусоидальный) и используется во всех бытовых цепях переменного тока. Давайте поподробнее остановимся на основных параметрах, а заодно рассмотрим основные формулы и зависимости.

Основные параметры синусоидального сигнала.

Сигнал

На этом рисунке изображено два сигнала (красный и синий 🙂 ). Отличаются они только одним параметром – а именно начальной фазой. Начальная фаза – это фаза сигнала в начальный момент времени, то есть при t = 0. При обсуждении генератора мы приняли величину \alpha_0 равной нулю, так вот это и есть начальная фаза. Для данных графиков уравнения выглядят следующим образом:

Синий график: i(t) = I_msin(wt)

Красный график: i(t) = I_msin(wt + \beta)

Для второй формулы (wt + \beta) это фаза переменного тока, а \beta – это начальная фаза. Часто для упрощения расчетов принимают начальную фазу равной нулю.

Значение i(t) в любой момент времени называют мгновенным значением переменного тока. Вообще все эти термины справедливы для любых гармонических сигналов, но раз уж мы обсуждаем переменный ток, то будем придерживаться этой терминологии 🙂 Максимальное значение функции sin(x) равно 1, соответственно, максимальная величина тока в нашем случае будет равна I_m – амплитудному значению.

Следующий параметр сигнала – циклическая частота переменного тока w – она, в свою очередь, определяется следующим образом:

Где f – частота переменного тока. Для привычных нам сетей 220 В частота равна 50 Гц (это значит, что 50 периодов сигнала укладываются в 1 секунду). А период сигнала равен:

Среднее значение тока за период можно вычислить следующим образом:

Эта формула представляет собой ни что иное как суммирование всех мгновенных значений переменного тока. А поскольку среднее значение синуса за период равно 0:

На этом мы на сегодня и заканчиваем, надеюсь, что статья получилась понятной и окажется полезной. В скором времени мы продолжим изучать электронику в рамках нашего нового курса, так что следите за обновлениями и заходите на наш сайт!

Источник