Меню

Что такое эффективное значение силы тока



Действующее значение тока и напряжения

Переменный ток, протекая по проводнику, нагревает его так же, как и постоянный ток. Силу переменного тока удобно оценивать по его тепловому действию (эффекту) или, как го­ворят, по действующей, эффективной его величине.

Действующее или эффективное значение переменного тока рав­но силе такого постоянного тока, который, протекая по дан­ному проводнику, выделяет в нем ежесекундно то же количе­ство энергии в виде тепла, что и переменный ток.

Тепловой эффект тока, а значит, и действующие (эффективные) значения переменного тока зависят не только от наибольших значений, которых до­стигает переменный ток, но и от формы тока.

Вообще говоря, в электротехнике, и особенно в радиотехни­ке, приходится иметь дело с токами довольно сложной формы. Но все эти токи могут быть представлены в виде суммы не­скольких синусоидальных токов с различными частотами, ам­плитудами и начальными фазами. Поэтому очень важную роль играет связь между амплитудным и действующем значениями для синусоидального тока.

Если известна амплитуда переменного синусоидального то­ка, то действующее или эффективное его значение определяет­ся по формуле:

Действующее значение тока

то есть эффективное значение синусоидального тока в korenраз меньше его амплитудного значения.

Аналогичная формула применяется и для вычисления эф­фективного значения синусоидального напряжения:

Действующее значение напряжения

Протекая по проводнику, переменный ток создает в нем эффективное падение напряжения, равное произведению эф­фективного значения силы тока на сопротивление проводника, что эквивалентно закону Ома для постоянного тока, то есть:

Действующее падение напряжения

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Эффективные (действующие) значения напряжения и силы тока.

В цепи переменного тока его направление и амплитуда меняются с частотой 50 Гц. Однако выделяемая на нагрузке энергия зависит не от направления тока в цепи, а лишь от его абсолютного значения. Всегда можно подобрать такое значение силы постоянного тока, чтобы энергия, выделяемая за некоторое время этим током на участке цепи с сопротивлением R, равнялась энер­гии, выделяемой за то же время переменным током.

Действующее значение силы переменного тока равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время. Оно определяется по формуле:

Эффективные действующие значения напряжения и силы тока

.

Действующее значение напряжения определяется аналогично:

Эффективные действующие значения напряжения и силы тока

.

Мощность, определяемая с использованием действующих значений силы тока и напряжения Р = IU, равна средней мощности переменного тока при совпадении фаз колебаний тока и напряжения:

Эффективные действующие значения напряжения и силы тока

.

Последнюю определяют усреднением мгновенной мощности за период колебаний:

Эффективные действующие значения напряжения и силы тока

.

Источник

Что такое эффективное значение силы тока

Эффективным (действующим) называют значение переменного тока равное величине эквивалентного постоянного тока, который при прохождении через такое же сопротивление, что и переменный ток выделяет на нем то же количество тепла за одинаковые промежутки времени.

Читайте также:  Ток электродинамической стойкости обозначение

Количественная связь амплитуд силы и напряжения переменного тока и эффективных значений

Количество тепла, которое выделяется переменным током на сопротивлении $R$ за малый промежуток времени $dt$, равно:

Тогда за один период переменный ток выделяет тепла ($W$):

Обозначим через $I_$ силу постоянного тока, который на сопротивлении $R$ выделяет такое же количество тепла ($W$), как и переменный ток $I$ за время равное периоду колебаний переменного тока ($T$). Тогда выразим $W$ через постоянный ток и приравняем выражение к правой части уравнения (2), имеем:

Готовые работы на аналогичную тему

Выразим из уравнения (3) силу эквивалентного постоянного тока, получим:

Если сила тока изменяется по синусоидальному закону:

подставим выражение (5) для переменного тока в формулу (4), тогда величина постоянного тока выразится как:

Следовательно, выражение (6) может быть преобразовано к виду:

где $I_$ называют эффективным значением силы тока. Аналогично записывают выражения для эффективных (действующих) значений напряжений:

Применение действующих значений тока и напряжения

Когда в электротехнике говорят о силе переменного тока и напряжении, то имеют в виду их эффективные значения. В частности, вольтметры и амперметры градуируют обычно на эффективные значения. Следовательно, максимальное значение напряжения в цепи переменного тока примерно в 1,5 раза больше того, что показывает вольтметр. Этот факт следует учесть при расчете изоляторов, исследовании проблем безопасности.

Эффективные значения используют для характеристики формы сигнала переменного тока (напряжения). Так, вводят коэффициент амплитуды ($k_a$). равный:

и коэффициент формы ($k_f$):

где $I_=\frac<2><\pi >\cdot I_m$ —средневыпрямленное значение силы тока.

Для синусоидального тока $k_a=\sqrt<2>,\ k_f=\frac<\pi ><2\sqrt<2>>=1,11.$

Задание: Напряжение, которое показал вольтметр равно $U=220 В$. Какова амплитуда напряжения?

Решение:

Как было сказано, вольтметры и амперметры обычно градуируют на действующие значения напряжения (силу тока), следовательно, прибор показывает в наших обозначениях $U_=220\ В.$ В соответствии с известным соотношением:

найдем амплитудное значение напряжения, как:

\[U_m\approx 1,41\cdot 220=310,2\ \left(В\right).\]

Ответ: $U_m\approx 310,2\ В.$

Задание: Как связана мощность переменного тока на сопротивлении $R$ и эффективные значения тока и напряжения?

Решение:

Среднее значение мощности переменного тока в цепи равно

где $cos\varphi $- коэффициент мощности, который показывает эффективность передачи мощности от источника тока к потребителю. С другой стороны средние мощности тока на отдельных элементах цепи $\left\langle P_\right\rangle =0,\left\langle P_\right\rangle =0,\left\langle P_\right\rangle =\frac<1><2>_mR,$ а результирующая мощность может быть найдена как сумма мощностей:

Читайте также:  Источник тока батарея гальванических элементов

\[\left\langle P\right\rangle =\left\langle P_\right\rangle +\left\langle P_\right\rangle +\left\langle P_\right\rangle \left(2.2\right).\]

Следовательно, можно записать, что:

\[\left\langle P\right\rangle =P_=\frac<1><2>_mR=\frac<2>\left(2.3\right),\]

где $I_m\ $- амплитуда силы тока, $U_m$ — амплитуда внешнего напряжения, $\varphi$ — разность фаз между силой тока и напряжением.

У постоянного тока мгновенная мощность совпадает со средней. Для $I_$=const можно положить $cos\varphi =1,\ $значит формулу (2.3) можно записать как:

если вместо амплитудных значений ($U_m\ и\ I_m$) использовать их эффективные (действующие) значения:

Следовательно, мощность тока можно записать как:

\[P_=U_I_cos \varphi \left(2.6\right),\]

где $cos \varphi$ — коэффициент мощности. В технике этот коэффициент делают как можно большим. При малом $cos\varphi $ для того, чтобы в цепи выделялась необходимая мощность нужно пропускать большой ток, что ведет к росту потерь в подводящих проводах.

Такую же мощность (как в выражении (2.3)) развивает постоянный ток, сила которого представлена в формуле (2.5).

Источник

Среднеквадратичное (действующее, эффективное) значение

Что же из себя представляет среднеквадратичное значение напряжения и как его замерить? Давайте разберем значение этого термина. Поможет нам в этих делах наш осциллограф OWON SDS6062 , Блок питания, а также ЛАТР (Лабораторный автотрансформатор). Для того, чтобы разобраться в этом, мы проведем простейший опыт.

Лампочка и постоянное напряжение

Для опытов нам также понадобится простая автомобильная лампа накаливания на напряжение 12 Вольт

Вот ее характеристики: рабочее напряжение U=12 Вольт, мощность Р = 21 Ватт.

Следовательно, зная мощность и напряжение лампы, можно узнать, какую силу тока будет потреблять лампочка. Из формулы P=IU, где I – сила тока, можно найти I. Значит I=P/U=21/12=1,75 Ампер.

Ладно, с лампочкой разобрались. Давайте ее зажжем. Для этого на нашем блоке питания выставляем рабочее напряжение для нашей лампы

Подаем напряжение с блока питания на лампу и вуаля!

Замеряем напряжение на клеммах-крокодилах блока питания с помощью мультиметра . Ровнехонько 12 Вольт, как и предполагалось.

К этим же клеммах цепляем и наш осциллограф

Видите прямую линию? Это и есть осциллограмма постоянного напряжения. В течение времени у нас напряжение остается таким, каким и было и не меняется. Если посчитать, то можно вычислить, чему равняется напряжение. Так как одна клеточка у нас 5 Вольт (на фото внизу слева), то значит, наше напряжение 12 Вольт. Я также вывел это значение на дисплей осциллографа в самом нижнем левом углу: 12,03 Вольт. Все верно.

Замеряем силу тока. Как правильно замерить силу тока в цепи, можно узнать, прочитав статью как измерить ток и напряжение мультиметром?.

Читайте также:  Отключение постоянного тока переменного

Получили 1,72 Ампер. А как вы помните, наше расчетное значение было 1,75 Ампер. Думаю, вину можно переложить на погрешность прибора или на лампочку 😉

Лампочка и переменное напряжение

Теперь начинается самое интересное. Берем наш ЛАТР

Ставим прибор на измерение переменного напряжения и выставляем с помощью крутилки ЛАТРа напряжение в 12 Вольт. Обратите внимание, что крутилка на мультиметре находится в диапазоне измерения переменного напряжения. Забегая вперед, скажу, что мультиметр измеряет среднеквадратичное напряжение.

Цепляем осциллограф к клеммах ЛАТРа, не забывая на осциллографе выставить замеры переменного напряжения и смотрим получившуюся осциллограмму:

Смотрим, сколько силы тока кушает наша лампочка. Все как положено, 1,71 Ампер.

Среднеквадратичное значение напряжения

Итак, что же у нас получилось? Как и постоянное напряжение, так и переменное напряжение зажигали одну и ту же лампочку, которая кушала одну и ту же мощность. Значит эта осциллограмма

Среднеквадратичное (действующее, эффективное) значение

и вот эта осциллограмма

Среднеквадратичное (действующее, эффективное) значение

Чем то похожи? Но чем.

Среднеквадратичное значение напряжения – это такое значение переменного напряжения, при котором нагрузка потребляет столько же силы тока, как и при постоянном напряжении. То есть лампочка у нас потребляла 1,71 Ампер и при постоянном токе и при переменном. То есть, в двух этих случаях, мощность, которую потребляла лампочка, была одинакова.

Также среднеквадратичное напряжение еще называют действующим или эффективным значением напряжения. С помощью несложных умозаключений, инженеры-электрики пришли к выводу действующее (оно же среднеквадратичное) напряжение синусоидального сигнала любой частоты равняется максимальной его амплитуде, поделенной на корень из двух

Стоп! Мы ведь не разобрали, что такое максимальная амплитуда! На осциллограмме максимальная амплитуда выглядит примерно вот так:

Если даже посчитать по клеточкам и посмотреть, чему равняется одна клеточка по вертикали (смотрим внизу слева, она равняется 5 Вольт), то Umax = 17 Вольт. Делим это значение на корень из двух. Я беру это значение как 1,41. Получаем, что среднеквадратичное значение равняется 17/1,41=12,06 Вольт. Ну что, все верно 😉

Значит, когда нам говорят, что напряжение в розетке равняется 220 Вольт, то мы то знаем, что на самом деле это среднеквадратичное напряжение. Максимальная амплитуда этих 220 Вольт равняется 220х1,41=310 Вольт.

Где же среднеквадратичное напряжение и максимальная амплитуда сигнала прячутся на табличке измерений? Да вот же они!

Vk – это и есть среднеквадратичное напряжение этого сигнала.

Ma – это и есть Umax.

Конечно, 16,6/1,41=11,8 Вольт, а он пишет 12,08 Вольт.

Источник