Меню

Что представляют собой силовые линии магнитного поля вокруг проводника с током



Магнитное поле тока. Магнитные силовые линии

Разница между энергией электрического поля и энергией магнитного поля примерно такая же, как между энергией, за­пасенной путем подъема какого-либо груза на высоту (потенциальная энергия), и энергией движения этого груза, когда он падает вниз (кинетическая энергия)

Магнитное поле создается вокруг электрических зарядов при их движении. Так как движение электрических зарядов представляет собой электрический ток, то вокруг всякого про­водника с током всегда существует магнитное поле тока.

Чтобы убедиться в существовании магнитного поля тока, поднесем сверху к проводнику, по которому протекает электрический ток, обыкновенный компас. Стрелка компаса тотчас же отклонится в сторону. Поднесем компас к проводнику с током снизу — стрелка компаса отклонится в другую сторону (рисунок 1).

Магнитное поле тока

Рисунок 1. Магнитное поле тока.

Убедившись в существовании вокруг проводника магнит­ного поля, т. е. пространства, где действуют магнитные силы, ознакомимся со свойствами этого поля. Насыплем на лист кар­тона тонкий слой железных опилок и пропустим через него проводник с током (рисунок 2 а.). Опилки расположатся вокруг проводника правильными концентрическими окружностями (то есть окружностями, имеющими один общий центр). Линии, образованные опилками, совпадают с силовыми ли­ниями магнитного поля. Таким образом, оказывается, что маг­нитные силовые линии не имеют ни начала, ни конца, а яв­ляются замкнутыми.

Стрелка компаса, помещенная в магнитное поле, всегда располагается вдоль магнитных силовых линий, причем ее северный (N) полюс показывает направление маг­нитных силовых линий в данной точке поля (рисунок 2 б).

Магнитные силовые линии

Рисунок 2. Магнитные силовые линии.

а-железные опилки распологаются вогруг проводника с током концентрическими окружностями; б-стрелки компаса всегда распологаются вдоль магнитных силовых линии.

Свойства магнитных силовых линий имеют некоторые об­щие черты со свойствами электрических силовых линий. Во-первых, магнитные силовые линии стремятся сократить свою длину (как растянутые резиновые нити); во-вторых, магнит­ные силовые линии одного направления отталкиваются друг от друга и, наконец, магнитные силовые линии, противополож­но направленные, притягиваются и взаимно уничтожают друг друга.

Магнитные силовые линии проходят через железо гораздо легче, чем через воздух и другие вещества. Если поместить железный пустотелый шар в магнитное поле, созданное, напри­мер, постоянным магнитом (рисунок 3), то магнитные силовые линии пройдут через оболочку этого шара, не попадая в его внутреннюю полость.

Магнитные силовые линии

Рисунок 3. Экранирование от магнитных полей.

Этим свойством магнитных силовых линий пользуются в радиотехнике для защиты элементов схемы, например, транс­форматоров, катушек и пр., от влияния со стороны внешних магнитных полей. Такая защита называется антимагнитным экранированием.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Магнитное поле прямолинейного проводника с током

Дата публикации: 09 августа 2013 .
Категория: Статьи.

Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами. Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная электродвижущая сила (э. д. с.).

Магнитное поле

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.

Рисунок 1. Магнитное поле вокруг проводника с током
Рисунок 2. Направление магнитных индукционных линий

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Рисунок 3. Условное обозначение направления тока в проводниках

Правило буравчика

Правило буравчика позволяет определить направление магнитных индукционных линий вокруг проводника с током. Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (рисунок 4).

Магнитная стрелка, внесенная в магнитное поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться «правилом буравчика» (рисунок 5). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

Рисунок 4. Определение направления магнитных индукционных линий вокруг проводника с током по «правилу буравчика» Рисунок 5. Определение направления отклонений магнитной стрелки, поднесенной к проводнику с током, по «правилу буравчика»

Магнитная индукция

Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Магнитная индукция
Рисунок 6. К закону Био и Савара

Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I, синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r:

где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.

Читайте также:  Полное сопротивление электрической цепи переменного тока это

В абсолютной практической рационализованной системе единиц МКСА

где µмагнитная проницаемость вакуума или магнитная постоянная в системе МКСА:

µ = 4 × π × 10 -7 (генри/метр);

генри (гн) – единица индуктивности; 1 гн = 1 ом × сек.

µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.

Размерность магнитной индукции можно найти по формуле

Вольт-секунда иначе называется вебером (вб):

На практике встречается более мелкая единица магнитной индукции – гаусс (гс):

Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где а – расстояние от проводника до точки, где определяется магнитная индукция.

Напряженность магнитного поля

Отношение магнитной индукции к произведению магнитных проницаемостей µ × µ называется напряженностью магнитного поля и обозначается буквой H:

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля.

Найдем размерность H:

Иногда пользуются другой единицей измерения напряженности магнитного поля – эрстедом (эр):

Напряженность магнитного поля H, как и магнитная индукция B, является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.

Магнитный поток

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Размерность магнитного потока:

то есть магнитный поток измеряется в вольт-секундах или веберах.

Более мелкой единицей магнитного потока является максвелл (мкс):

Видео 1. Гипотеза Ампера

Видео 2. Магнетизм и электромагнетизм

Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Источник

Магнитное поле

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

магнетит

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой – на ЮГ.

магнетит на воде

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

китайский древний компас

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

древний компас со стрелкой

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец – южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм “Южный парк”, он же Сауз (South) парк).

сауз парк

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

линии магнитного поля

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии – они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

замкнутые магнитные линии

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

взаимодействие разноименных магнитных полей

Если же приблизить одноименными полюсами, то произойдет их отталкивание

взаимодействие одноименных полюсов магнита

Итак, ниже важные свойства магнитных силовых линий.

  • Магнитные линии не поддаются гравитации.
  • Никогда не пересекаются между собой.
  • Всегда образуют замкнутые петли.
  • Имеют определенное направление с севера на юг.
  • Чем больше концентрация силовых линий, тем сильнее магнитное поле.
  • Слабая концентрация силовых линий указывает на слабое магнитное поле.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке “а” или на рисунке “б”?

плотность магнитного потока

Видим, что на рисунке “а” мало силовых магнитных линий, а на рисунке “б” их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке “б” больше, чем на рисунке “а”.

В физике формула магнитного потока записывается как

формула магнитного потока

Ф – магнитный поток, Вебер

В – плотность магнитного потока, Тесла

а – угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S – площадь, через которую проходит магнитный поток, м 2

магнитный поток

Что же такое 1 Вебер? Один вебер – это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: “напряженность между ними все росла и росла”. То есть по сути напряженность – это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

Читайте также:  По проволоке имеющей форму правильного шестиугольника идет ток

напряженность магнитного поля формула

H – напряженность магнитного поля, Ампер/метр

B – плотность магнитного потока, Тесла

μ – магнитная постоянная = 4π × 10 -7 Генри/метр или если написать по человечески 1,2566 × 10 -6 Генри/метр.

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

напряженность магнитного поля в веществе формула

μ – это относительная магнитная проницаемость.

У разных веществ она разная

магнитная проницаемость веществ

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

напряженность проводника с током

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

напряженность магнитного поля проводника с током

H – напряженность магнитного поля, Ампер/метр

I – сила тока, текущая через проводник, Ампер

r – расстояние до точки, в которой измеряется напряженность, метр

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

правило буравчика

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

саморез

Ввинчиваем по часовой стрелке – саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам – кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

направление электрического тока

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

суммирование магнитного поля

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

сумма магнитных полей

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.

соленоид

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

плотность магнитного потока в соленоиде

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

принцип работы соленоида

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала – феррита.

многообмоточная катушка

Если в электрических цепях есть такое понятие, как ЭДС – электродвижущая сила, то и в магнитных цепях есть свой аналог – МДС – магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

многообмоточная катушка

I – это сила тока в катушке, Амперы

N – количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Похожие статьи по теме “магнитное поле”

Источник

Силовые линии магнитного поля — свойства, характеристика и направление

Общие сведения

Ещё в XIX веке было установлено, что направленное движение элементарных носителей зарядов приводит к появлению электрического тока. Заряды, взаимодействуя между собой, вызывают появление силы, которую называют электромагнитным полем. То есть вокруг любого заряженного тела возникает два явления: магнитное и электрическое.

Первое, в отличие от второго, возможно только при движении электрического заряда. Даже если оно создано постоянным магнитом, всё равно причиной его появления является движение частиц. По своей сути магнитное поле — это сила, характеризующаяся моментом. Она обладает энергией. Любое изменение электрического поля приводит к возмущению магнитного. Причём это утверждение справедливо и наоборот.

Основной характеристикой силы является вектор индукции. С его помощью определяют действие магнитного поля в точке пространства. То есть параметр показывает, с какой силой оказывается влияние на заряд q перемещающийся со скоростью V. Это векторная величина формула для расчёта, которой имеет вид: F = q *V * sin (a), где a — значение угла между вектором скорости и магнитной индукции. При этом направление силы может быть определено по правилу буравчика. Оно всегда будет направлено перпендикулярно вектору скорости. За единицу измерения в СИ принята тесла (Тл).

Для магнитного поля характерно следующее:

  1. При постоянной его величине на диполь действует момент вращения: N = [p * B]. Как стрелка компаса разворачивается вдоль действия поля, так и виток, по которому течёт ток, стремится занять положение, при котором его плоскость будет параллельна линиям индукции.
  2. Возникновение индукции приводит к тому, что траектория движения носителя заряда принимает спиральный вид. Этот эффект проявляется в распределении электрических частиц по сечению проводника.
  3. Изменяющееся во времени поле заставляет заряды приходить в движение, появляющийся при этом ток противодействует дальнейшему непостоянству силы во времени.
  4. Сила, действующая в магнитном поле, перемещает диполь в направлении градиента. Это происходит из-за разделения воздействия в неоднородной системе на два пучка.

Магнитное поле представляет собой материю. Определяется она свойствами вещества. С точки зрения квантовой механики, это частный случай электромагнитного взаимодействия. Для его изображения используют воображаемые отрезки. Это магнитные линии магнитного поля, которые представляют как замкнутые направленные кривые.

Линии магнитного поля

Электрическое поле можно исследовать с помощью элементарных зарядов, по поведению которых удобно судить о значении и направлении материи. Аналогом такой энергии является пробная частица, которую можно представить в виде стрелки, точнее компаса. Например, если взять много устройств, указывающих на магнитные полюса Земли, и разместить их в некотором геометрическом пространстве, то можно будет визуализировать силы, характеризующие электромагнитное поле.

Читайте также:  220 вольт это сила тока или напряжение

Но определить направление материи вокруг проводников с током различной формы или так называемый магнитный спектр можно и практически. Для этого используются различные установки. Простейшей из них является комплекс, включающий в свой состав:

  • источник питания;
  • диэлектрическую рамку;
  • толстый медный провод способный пропустить ток порядка 20 ампер;
  • железные опилки.

В рамке через просверленное отверстие продевают провод, который подключают к источнику питания. Сверху на проволоку насыпают стружки. После подачи тока можно будет наблюдать, как образуются цепочки, повторяющие форму распространения силы поля. Например, вокруг прямого провода, расположенного перпендикулярно пластинке, можно будет увидеть кольцевые силовые линии.

Проведя эксперимент, можно узнать в чём состоит особенность линий магнитной индукции. Во-первых, их распространение неравномерное. В некоторых местах они гуще. Во-вторых, эти линии никогда не пересекаются и всегда замкнутые. С точки зрения физики, можно добавить, что направление магнитного поля возможно выяснить по правилу буравчика. При этом вектор индукции касателен к каждой точке отрезка.

Следует отметить, что исследовать поле, правда, постоянное, можно с помощью обычного магнита и компаса.

Для эксперимента нужно высыпать опилки на лист бумаги, а рядом с ними положить компас. Затем снизу медленно поднести магнит, желательно через деревянную прослойку. Тогда можно будет не только увидеть рисунок поля, но и заметить, что стрелка компаса показывает в ту же сторону, куда направлены железные опилки.

Опыт Эрстеда

Довольно продолжительное время электрические и магнитные поля изучались раздельно. Их взаимосвязь была обнаружена совершенно случайно. Существует легенда, что Кристиан Эрстед показывал ученикам на своей лекции в университете влияние толщины проводника на силу тока. При этом на демонстрационном столе лежал компас, оставшийся от предыдущей лекции. Во время рассказа Эрстеда о природе нагрева проволоки, один из его студентов обратил внимание, что стрелка компаса изменила положение. Этот эффект после позволил учёному утверждать, что на магнитную стрелку, расположенную вблизи с проводником тока, действуют силы, стремящие её развернуть.

Главный интерес этого явления был в том, что, кроме изменения положения стрелки никаких, более эффектов не наблюдалось.

Проведя ряд опытов, учёный установил, что на направление указателя влияла полярность подключения источника питания. При её изменении стрелка сразу же изменяла своё направление на противоположное. Но оказалось, что влияние магнитного потока настолько мало, что обнаружить его, возможно, только с помощью чувствительных приборов.

Чтобы более точно представить, по какому принципу происходит поворот магнитной стрелки вблизи проводника с током нужно рассмотреть проволоку с торца. Тогда можно будет изучить два случая:

  • ток идёт от наблюдающего;
  • заряды двигаются к исследователю.

Если установить множество стрелок вокруг проводника, то окажется, что после пропускания тока они выстроятся так, что образуют своеобразную окружность. При этом их полюса будут противоположны друг другу. Эти стрелки примут положение по касательной к магнитным линиям. Таким образом, можно будет увидеть, что линии, описывающие распространение поля, представляют окружность. Их же направления в первом случае будут по часовой стрелке, а во втором — против.

Это важное свойство магнитных линий и наблюдал Эрстед. Ампер же смог развить исследование дальше. Он установил, что если взять два проводника, разместить их параллельно и пустить по ним токи в одном направлении, то возникает сила притягивания. Если же в одном из них поменять подключение — проводники начинают отталкиваться. Именно благодаря Амперу удалось эмпирически доказать, как происходит взаимодействие проводника, по которому течёт ток, с полем постоянного магнита и описать зависимость зарядов от их направления.

Виток и катушка

Определить направление магнитного потока можно по правилу, которое называется буравчиком. Нужно взять проводник с током и расположить вдоль него винт. При этом добиться того, чтобы стержень перемещался вдоль направления тока. Для этого понадобится вращать буравчик в определённую сторону, которая и будет показывать, куда направлено магнитное поле.

Аналогом этого способа является правило правой руки. Заключается оно в том, что если поставить её большой палец по направлению тока, то тогда оставшиеся четыре укажут сторону распространения действия силы. Определить, как будут направлены линии в прямом проводнике, не представляет трудности.

Для провода, согнутого в виток, методика определения изменится. Изогнутый проводник можно представить как множество кусочков. Наиболее интересными из них будут два — расположенные в начале и в конце. Если воспользоваться правилом буравчика и нарисовать направление, то можно увидеть, что вокруг каждого из концов возникнут противоположные друг другу силовые линии. Они будут замкнуты и иметь радиальную форму. Но особенность их в том, что в середине проводника сила действия поля будет намного сильнее, чем при удалении от неё.

Оказывается, что если ток течёт по кольцу, то правило буравчика тоже будет работать, но с небольшим отличием.

Если при прямом токе вращение ручки, расположенной по направлению перемещения частиц, указывает сторону распространения линий, то для витка ситуация повторяется с точностью наоборот. Когда буравчик вращается по направлению тока, то стержень устройства показывает, куда направлено поле внутри витка.

Аналогичную картину можно получить, если из проволоки смотать катушку. В середине её линии будут более густо расположены, чем снаружи. Этим и пользуются для получения сильного магнитного потока. Все эти явления связаны с природой рассматриваемой силы. Линии поля всегда выходят из северного полюса и входят в южный. Вот почему направление вектора магнитной индукции совпадает с северным указателем магнитной стрелки. Следует отметить важный момент: на самом деле силовые линии двух одинаковых точечных зарядов могут пересекаться, но в этом случае поле в этой точке будет равно нулю.

Понятие природы магнитной индукции позволило использовать силу в технологическом прогрессе человечества. Например, были созданы поезда, способные развивать огромную скорость, так как они двигаются на магнитной подушке. Вагоны скользят над поверхностью, не испытывая трения.

Открытия используются и при изучении работы головного мозга. Оказалось, что при его деятельности возникает слабое магнитное поле, исследование которого помогает понять принцип работы нейронов.

Источник