Меню

Что не может быть источником тока аккумулятор батарейка трансформатор



Источники постоянного тока

Постоянный ток — это такой ток, который почти (поскольку ничего идеального в мире нет) не изменяется во времени, ни по величине, ни по направлению. Исторически первые источники постоянного тока были исключительно химическими. Сначала они были представлены только гальваническими элементами, а позже появились и аккумуляторы.

Гальванические элементы и аккумуляторы имеют строго определенную полярность, и направление тока в них самопроизвольно не изменяется, поэтому химические источники тока — это принципиально источники постоянного тока.

Источники постоянного тока

Гальванический элемент

Пальчиковая батарейка АА — яркий пример современного гальванического элемента. Цилиндрическая щелочная батарейка ( которую любят называть алкалиновой, тогда как слово «alkaline» переводится как «щелочная») содержит внутри раствор гидроксида калия в качестве электролита. На положительном полюсе батарейки находится диоксид марганца, а на отрицательном — цинк в виде порошка.

Гальванические элементы

Когда внешняя цепь батарейки замыкается на нагрузку, на аноде (отрицательном полюсе) происходит химическая реакция окисления цинка, одновременно с этим на катоде (положительном полюсе) идет реакция восстановления оксида марганца четырехвалентного до оксида марганца трехвалентного.

В результате с отрицательного полюса электроны бегут в сторону положительного полюса через внешнюю цепь нагрузки. Так работает источник постоянного тока — гальванический элемент.

Химический процесс в гальваническом элементе не обратим, то есть пытаться заряжать его бесполезно. Напряжение между полюсами новой пальчиковой батарейки 1,5 вольта, что обусловлено потенциалами веществ, участвующих в химической реакции внутри нее.

Батарейка и лампочка

Аккумулятор

Литий-ионный аккумулятор, в отличие от батарейки, можно после разрядки снова заряжать, поскольку химический процесс в нем обратим. С виду аккумулятор работает как батарейка, то есть тоже дает в цепь нагрузки принципиально только постоянный ток, но емкость у аккумулятора обычно больше чем у батарейки примерно такого же размера.

Аккумуляторы

В ходе разрядки литиевого аккумулятора, химическая реакция на аноде (отрицательном электроде) состоит в отделении лития от углерода и его переходе в состав соли на катоде (положительном электроде). А при зарядке ионы лития вновь переходят к углероду на аноде.

Разность потенциалов между полюсами литий-ионного аккумулятора может доходить до 4,2 вольт. Максимальный ток зависит от площади взаимодействия электродов внутри аккумулятора с электролитом и соответственно друг с другом.

Генератор

В промышленных масштабах постоянный ток получают при помощи генераторов постоянного тока. Как правило, на статоре такой машины расположены неподвижные магниты либо электромагниты, наводящие во вращающихся контурах ЭДС по закону электромагнитной индукции.

Генераторы на электростанции

Вращающиеся контуры соединены каждый с контактными пластинами щеточно-коллекторного узла, через которые посредством неподвижных щеток и снимается в цепь нагрузки генерируемый ток. Поскольку контуры контактируют с положительной и отрицательной щетками только при прохождении мимо определенных магнитных полюсов статора, ток во внешней цепи получается выпрямленным переменным, то есть пульсирующим постоянным.

Величина тока зависит от сечения проводов, индукции магнитного поля статора и площади статора. Величина напряжения — от скорости вращения ротора генератора и от индукции магнитного поля статора.

Солнечный элемент

Солнечные батареи также дают постоянный ток. Фотоны солнечного света попадая на фотоэлемент вызывают движение положительно заряженных дырок и отрицательно заряженных электронов через p-n-переход, и во внешней цепи получается таким образом постоянный ток.

Солнечные элементы

Чем больше совокупная площадь фотоэлементов — тем больше электронов и дырок участвуют в образовании тока, тем больший ток можно получить от солнечной батареи. Генерируемое напряжение солнечной батареи зависит от интенсивности солнечного света и от количества соединенных последовательно фотоэлементов, входящих в конструкцию солнечной батареи.

Трансформатор с выпрямителем

Раньше в электронной аппаратуре для получения постоянного тока, при питании от бытовой сети переменного тока, сплошь и рядом использовались блоки питания с трансформаторами на железе. Переменное сетевое напряжение понижалось при помощи трансформатора, а затем выпрямлялось при помощи лампового или диодного выпрямителя.

Трансформатор с выпрямителем

После выпрямителя в такой схеме всегда стоит фильтр, состоящий как минимум из конденсатора, а в лучшем случае — из конденсатора и дросселя, да еще и транзисторного стабилизатора напряжения, особенно если источник тока должен быть регулируемым.

Напряжение на выходе такого блока питания зависит от количества витков вторичной обмотки трансформатора, а максимальная величина тока — от номинальной мощности трансформатора.

Источник питания для светодиодной ленты

Импульсный блок питания

Сегодня в радиоэлектронной аппаратуре для получения постоянного тока почти не используют блоки питания с низкочастотными трансформаторами на железе, на замену им пришли импульсные блоки питания. В них выпрямленное сетевое напряжение сначала понижается при помощи высокочастотного трансформатора и транзисторных ключей, а затем выпрямляется. Ток направляется через фильтр в конденсатор фильтра.

Импульсный блок питания

Конструкция импульсного блока питания получается гораздо меньше размером, чем с трансформатором на железе. Но шумов в выходном токе больше. Поэтому особое внимание при конструировании импульсных блоков питания уделяют фильтрации тока на выходе к нагрузке.

Напряжение на выходе импульсного блока питания зависит от устройства электронной схемы, а максимальный ток — от размера высокочастотного трансформатора и качества находящихся на схеме радиоэлектронных компонентов.

Конденсатор и ионистор

Источником постоянного электрического тока можно назвать в определенном смысле электрический конденсатор. Конденсатор накапливает электрическую энергию в форме постоянного электрического поля между своими обкладками, а затем может отдавать эту энергию в форме постоянного тока или импульсного разряда. И то и другое по сути — постоянный ток, отличающийся лишь длительностью проявления.

Ионисторы

Но электролитические конденсаторы сегодня выпускаются на огромные емкости в тысячи и более микрофарад. Особая разновидность конденсатора — ионистор (суперконденсатор) — он занимает промежуточное место между аккумулятором и конденсатором.

Химические процессы в ионисторе протекают практически с такой же скоростью как в конденсаторе, но в отличие от аккумулятора, ионистор обладает меньшим внутренним сопротивлением, что позволяет получать от ионисторов большие постоянные токи на протяжении более длительного времени. Чем больше емкость конденсатора — тем больший по величине и более продолжительный ток можно получить с его помощью.

Источник

Какие существуют виды источников электрического тока?

Источник электрического тока – это устройство, с помощью которого создаётся электрический ток в замкнутой электрической цепи. В настоящее время изобретено большое количество видов таких источников. Каждый вид используется для определённых целей.

Какие существуют виды источников электрического тока?

Виды источников электрического тока

Существуют следующие виды источников электрического тока:

  • механические;
  • тепловые;
  • световые;
  • химические.

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Какие существуют виды источников электрического тока?

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному. Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока. Металлические термопары используют лишь для измерения температуры.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор. В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой. Преобразователем тепла в электричество служит биметаллическая термопара.

Световые источники

С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока. Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту. Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.

Какие существуют виды источников электрического тока?

Химические источники

Все химические источники можно разбить на 3 группы:

  1. Гальванические
  2. Аккумуляторы
  3. Тепловые

Гальванические элементы работают на основе взаимодействия двух разных металлов, помещённых в электролит. В качестве пар металлов и электролита могут быть разные химические элементы и их соединения. От этого зависит вид и характеристики элемента.

ВАЖНО! Гальванические элементы используются только разово, т.е. после разряда их невозможно восстановить.

Существует 3 вида гальванических источников (или батареек):

  1. Солевые;
  2. Щелочные;
  3. Литиевые.
Читайте также:  Измерение плотности катодного тока

Солевые, или иначе «сухие», батарейки используют пастообразный электролит из соли какого-либо металла, помещённый в цинковый стаканчик. Катодом служит графито-марганцевый стержень, расположенный в центре стаканчика. Дешёвые материалы и лёгкость изготовления таких батареек сделали их самыми дешёвыми из всех. Но по характеристикам они значительно уступают щелочным и литиевым.

Какие существуют виды источников электрического тока?

В щелочных батарейках в качестве электролита используется пастообразный раствор щёлочи — гидрооксида калия. Цинковый анод заменён на порошкообразный цинк, что позволило увеличить отдаваемый элементом ток и время работы. Эти элементы служат в 1,5 раза дольше солевых.

В литиевом элементе анод сделан из лития — щелочного металла, что значительно увеличило продолжительность работы. Но одновременно увеличилась цена из-за относительной дороговизны лития. Кроме того, литиевая батарейка может иметь различное напряжение в зависимости от материала катода. Выпускают батарейки с напряжением от 1,5 В до 3,7 В.

Аккумуляторы — источники электрического тока, которые можно подвергать многим циклам заряда-разряда. Основными видами аккумуляторов являются:

  1. Свинцово-кислотные;
  2. Литий-ионные;
  3. Никель-кадмиевые.

Свинцово-кислотные аккумуляторы состоят из свинцовых пластин, погружённых в раствор серной кислоты. При замыкании внешней электрической цепи происходит химическая реакция, в результате которой свинец преобразуется в сульфат свинца на катоде и аноде, а также образуется вода. В процессе зарядки сульфат свинца на аноде восстанавливается до свинца, а на катоде до диоксида свинца.

Какие существуют виды источников электрического тока?

Литий-ионный аккумулятор получил своё название из-за того, что в качестве носителя электричества в электролите служат ионы лития. Ионы возникают на катоде, который изготовлен из соли лития на подложке из алюминиевой фольги. Анод изготавливается из различных материалов: графита, оксидов кобальта и других соединений на подложке из медной фольги.

Напряжение в зависимости от применяемых компонентов может быть от 3 В до 4,2 В. Благодаря низкому саморазряду и большому количеству циклов заряда-разряда литий-ионные аккумуляторы приобрели большую популярность в бытовой технике.

ВАЖНО! Литий-ионные аккумуляторы очень чувствительны к перезарядке. Поэтому для их зарядки нужно использовать зарядные устройства, предназначенные только для них, которые имеют встроенные специальные схемы, предотвращающие перезаряд. Иначе может произойти разрушение аккумулятора и его возгорание.

Какие существуют виды источников электрического тока?

В никель-кадмиевых аккумуляторах катод сделан из соли никеля на стальной сетке, анод из соли кадмия на стальной сетке, а электролит — смесь гидроксида лития и гидроксида калия. Номинальное напряжение такого аккумулятора — 1,37 В. Он выдерживает от 100 до 900 циклов зарядки-разрядки.

Тепловые химические элементы служат как источники резервного питания. Они дают отличные характеристики по удельной плотности тока, но имеют короткий срок службы (до 1 часа). Применяются в основном в ракетной технике, где нужны надёжность и кратковременная работа.

Источник

Что это такое источник тока, батарея и аккумулятор, как они работают

Радиоприемники или усилители низкой частоты, с работой которых ты будешь знакомиться в ходе практикумов, телевизоры, магнитофоны, звуковоспроизводящая аппаратура в кинотеатрах и многие другие радиотехнические устройства работают за счет потребления электрической энергии из электроосветительной сети и от батареи гальванических элементов или аккумуляторов.

Только самые простые Приемники — детекторные — не требуют дополнительных источников тока и работают благодаря «вылавливанию» из пространства энергии радиоволн, излучаемой антеннами радиовещательных станций.

Но чтобы передатчики этих станций могли излучать радиоволны, они должны непрерывно потреблять энергию электрического тока. Короче говоря, источник тока является неотъемлемой частью радиотехнического устройства. Именно поэтому твой первый практикум на пути знакомства с радиотехникой и будет посвящен источникам тока.

Ты, надеюсь, уже знаешь из школьного курса физики или популярной литературы по электротехнике, что различают ток постоянный и ток переменный. При постоянном токе носители электрических зарядов (электроны) а проводнике, например в отрезке провода, включенном в электрическую цепь, или в нити лампочки накаливания, движутся все время в одном направлении. Источниками постоянного тока могут быть, например, батареи 3336Л (их часто по старинке называют КБС) — те, что питают лампочки плоских карманных фонарей.

При переменном же токе электроны в проводнике или в той же нити накала лампочки движутся попеременно то в одну, то в другую сторону.

В электроосветительной сети, питающей бытовые электроприборы, ламповые или транзисторные приемники и телевизоры, ток изменяет свое направление с частотой 50 Гц (герц — основная единица измерения частоты: 1 Гц — одно полное колебание в секунду).

При таком токе электроны в проводнике 50 раз в секунду движутся в одном направлении и столько же раз в обратном. В антеннах передатчиков, излучающих энергию радиоволн, частота питающих их переменных токов составляет сотни килогерц (1 кГц =1000 Гц) и даже десятки мегагерц (1 МГц=1 000000 Гц или 1000 кГц).

Электрический ток характеризуют напряжением, измеряемым в вольтах (В), и силой, измеряембй в амперах (А). Измеряют эти основные электрические параметры вольтметрами и амперметрами.

В электрических цепях приемников и. усилителей протекают токи, чаще всего не превышающие нескольких десятков миллиампер (1 мА = 0,001 А). Поэтому для измерения токов ты будешь пользоваться главным образом миллиамперметром или даже микроамперметром (1 мкА = 0,001 мА).

Для измерения напряжений, токов, сопротивлений участков цепей радиолюбителям чаще всего нужны аво-метры. Так называют электроизмерительный прибор, совмещающий в себе амперметр, миллиамперметр, вольтметр и омметр. Можно, например, пользоваться авометром «Школьный». Впрочем, авометр может быть и самодельным, о чем ты узнаешь в следующем практикуме.

Для опытов, иллюстрирующих принцип действия и свойства полупроводниковых диодов и транзисторов, для питания твоих первых транзисторных усилителей и приемников потребуются гальванические элементы 332, 343, 373 или батареи, составленные из гальванических элементов, например 3336Л, «Крона» (рис. 1) или аккумуляторная батарея 7Д-0,1 (цифра 7 в обозначении этой батареи говорит о том, что она состбит из семи аккумуляторов).

Один свежий гальванический элемент, независимо от его размеров, развивает напряжение 1,5 В (заряженный аккумуляторный элемент — 1,2 В); батарея 3336Л — 4,5 В; батарея «Крона» или 7Д-0,1 — 9 В. Эти напряжения элементов и батарей обычно указываются на этикетках-паспортах.

Иногда элементы и батареи характеризуют электродвижущей силой, или сокращенно ЭДС. Это тоже напряжение, но развиваемое элементом или батареей без нагрузки, то есть без потребителя тока. При подключении к элементу нагрузки, например лампочки, напряжение становится меньше, чем ЭДС.

гальванический элемент и батарея

Разобраться в том, как работают источники постоянного тока, тебе помогут несколько опытов, проведение которых займет не больше одного вечера. Для опытов потребуются совершенно разряженная и, следовательно, неприродная для дальнейшего применения батарея 3336Л, медная проволока или пластинка Аистовой меди, поваренная (столовая) соль, немного медного купороса в кристаллах и, конечно, вольтметр постоянного тока (авометр) для измерения напряжений опытных элементов. —

Удали с батареи бумажную этикетку и защитный слой бумаги (рис. 2, а) — увидишь три ее элемента. Крайние элементы изолированы от среднего полосками картона, пропитанными парафином. Сверху элементы залиты черной мастикой (смолкой). Осторожно удали ее — увидишь угольные стержни с медными контактными колпачками на концах, выступающие из цинковых стаканчиков. Угольные стержни — это положительные электроды элементов, а цинковые стаканчики — отрицательные.

Как соединены между собой элементы батареи?

Последовательно. Угольные стержни двух элементов соединены отрезками провода с цинковыми стаканчиками соседних элементов. К колпачку свободного стержня и свободному стаканчику крайних элементов припаяны жестяные пластинки, являющиеся выводами электродов батареи. Короткая пластинка — вывод положительного электрода, длинная — отрицательного.

На схемах отрицательные электроды элементов или аккумуляторов обозначают короткими, положительные — более длинными черточками, а рядом ставят соответствующие им знаки: « — » и « + ». Одиночный гальванический элемент или аккумулятор, используемые для питания прибора или радиотехнического устройства, на схемах обозначают латинской буквой G («же»), а батарею, составленную из элементов или аккумуляторов, буквами GB.

Разрезав соединительные проводнички, отдели один элемент. Осторожно разрежь по длине его цинковый стаканчик (рис. 2, б). Отогнув края, увидишь мешочек, в котором находится угольный электрод. Обрати внимание на студенистую пасту, заполняющую пространство между мешочком и стенками стаканчика.

Подогрей стаканчик и извлеки из него мешочек с угольным стержнем. Распори мешочек — увидишь черную массу. Очисти от нее угольный стержень.

О назначении угольной массы в мешочке положительного электрода и студенистой пасты, отделяющей мешочек от стенок стаканчика отрицательного электрода, узнаешь позже. Сейчас же займись опытами.

В стакан или стеклянную банку из-под майонеза налей чистую воду комнатной температуры и раствори в ней две-три чайные ложки поваренной соли. Опусти в раствор медную пластинку или кусочек медной проволоки, сложенной вдвое, и цинковую пластинку, отрезанную от цинкового стаканчика разобранного элемента.

Читайте также:  Пластик это проводник тока

У тебя получился простейший источник постоянного тока. Чтобы проверить, действует ли он, подключи к нему вольтметр, как показано на рис. 3 (на схемах электроизмерительные приборы обозначают кружками с буквами РА (измеритель тока) или PU (измеритель напряжения), а выполняемые ими функции — буквами в кружках: V — вольтметр: мА — миллиамперметр: мA — микроампер-метрг и — омметр).

Зажим положительного вывода вольтметра должен соединяться с медной пластинкой, зажим отрицательного вывода — с цинковой пластинкой. Между собой пластинки не должны соединяться.

Что показывает вольтметр? Постоянное напряжение около 1В. Не отключая вольтметра, вытащи одну из пластинок из раствора соли — стрелка вольтметра тут же вернется к нулевой отметке на шкале. Опусти пластинку в раствор — вольтметр покажет то же напряжение.

самодельный гальванический элемент схема

Таким образом элемент действует. Его медная пластинка является прложитель-ным электродом, цинковая — отрицательным, а раствор поваренной соли, в которую погружены пластинки, электролитом элемента.

Еще один эксперимент. Замени медную пластинку угольным стержнем разобранного элемента батареи 3336Л. Вольтметр тоже будет фиксировать напряжение, только, возможно, несколько меньшее, чем с электродом из меди, — и в ,этом случае элемент действует, а его цинковая пластинка остается отрицательным электродом.

Будет ли лампочка от карманного фонаря, подключенная к такому элементу, гореть?

Нет (проверь, так ли это). Но ток через нить лампочки будет все же идти, в чем можно убедиться, включив последовательно с ней миллиамперметр. Ток этот чрезвычайно мал — всего 2. 3 мА, а чтобы нить лампочки накалить, через нее надо пропускать примерно в 100 раз больший ток.

При погружении цинковой пластинки в раствор поваренной соли между ними возникает химическая реакция, в результате которой на цинковой пластинке образуется излишек электронов и она заряжается отрицательно.

При этом раствор соли (то есть электролит) и медная пластинка по отношению к цинковой заряжаются положительно. В результате между пластинками-электродами элемента возникает напряжение, которое и фиксирует вольтметр. Сам же вольтметр при измерении является как бы нагрузкой элемента, потребляющей небольшой ток.

схема гальванического элемента

Если к электродам элемента подключить лампочку накаливания или замкнуть их, то есть соединить между собой, ток потечет внутри элемента, через электролит. При этом внутри элемента начинает интенсивно выделяться водород, покрывающий поверхности пластинок слоем пузырьков. Это явление называют поляризацией. Слои пузырьков водорода уменьшают напряжение элемента. Из-за поляризации такой элемент не представляет практической ценности, но благодаря своей простоте он интересен как демонстрационное пособие.

Практическое применение может найти другой вариант элемента — медно-цинковый (рис. 4). На дно стакана положи круглую пластинку, вырезанную из листовой меди, или спираль из голой медной проволоки толщиной 1. 1,5 мм.

Это — положительный электрод элемента. На его проволочный вывод надень резиновую либо поливинилхло-ридную трубочку или оберни его изоляционной лентой. У цинкового стаканчика разобранного тобой сухого элемента отрежь донышко, а к оставшемуся незамкнутому цилиндру припаяй отрезки медной проволоки, которые бы удерживали этот электрод в стакане и одновременно служили его выводами. Это — отрицательный электрод элемента.

На медный электрод насыпь горкой 20. 30 г медного купороса и осторожно налей в стакан раствор поваренной соли, используемый тобой для первого опытного элемента. Через некоторое время часть медного купороса растворится и образует в нижней части стакана слой жидкости голубовато-зеленого цвета. После этого опусти в раствор цинковый электрод так, чтобы его нижний конец не доходил до верхней границы раствора медного купороса на 10. 12 мм. Закрепи его в таком положении в стакане.

Элемент готов. Чтобы привести его в действие, надо лишь замкнуть его выводы на 10. 15 мин. После этого подключи к элементу лампочку от карманного электрического фонаря. Лампочка горит. Нить накала светится, но тускло.

Так оно и должно быть: нить накала этой лампочки рассчитана на напряжение источника тока 2,5 В, а твой элемент развивает напряжение не более 1 В. Измерь это напряжение вольтметром. Чтобы лампочка светилась ярче, надо сделать три одинаковых элемента и соединить их последовательно. Как работает такой элемент?

Принципиально так же, как и первый опытный Благодаря химической реакции между цинком и раствором поваренной соли цинк приобретает отрицательный электрический заряд.

При этом образуются пузырьки водорода, которые движутся к положительному электроду, но, не доходя до него, растворяются в толще раствора медного купороса. Поэтому поляризация не наступает, и элемент работает устойчиво. Таким образом, раствор медно-ного купороса является здесь деполяризатором.

Один такой элемент, независимо от его размеров, да-jer напряжение около 1 В. А вот сила тока, которую он может развить в электрической цепи, полностью зависит от его размеров: чем больше объем сосуда и площадь поверхностей электродов, тем больше может быть ток, создаваемый элементом в подключенной к нему нагрузке. Так, например, если элемент с цинковым электродом диаметром 70. 75 мм собрать в пол-литровой стеклянной банке, от него можно получить ток до 200. 250 мА (0,2. 0,25 А).

Лучше всего для отрицательных электродов подойдет листовой цинк (не путай с оцинкованным железом) толщиной 0,8. 1 мм. Чем он толще, тем элемент дольше будет служить. Эти электроды крепи на крышках банок, защищающих электролит от пыли и сора. Для раствора поваренной соли используй дистиллированную или дождевую воду. В зимнее время можно растопить чистый снег.

Элементы нельзя переносить, трясти, иначе слои электролита перемешаются и элементы перестанут давать ток. Поэтому элементы собирай и заливай электролитом в том месте, где они будут стоять неподвижно.

Голубовато-зеленый слой электролита должен быть только в нижней части банки. Не допускай, чтобы его верхняя граница поднималась до цинка, иначе действие элемента ухудшится, а цинк станет быстро разрушаться. Если эта граница подойдет к цинку ближе, чем на б. 10 мм, то подержи электроды замкнутыми накоротко, пока граница не опустится до нужного уровня. Если же она слишком понизится, осторожно брось в элемент несколько кристалликов медного купороса.

На поверхность электролита полезно пустить несколько капель растительного или вазелинового масла, которое образует пленку, предотвращающую испарение электролита. Края банки и цинкового электрода, выстулающего над электролитом, а также выводы обоих электродов желательно смазать вазелином или салом.

Вот, собственно, те основные советы, которые надо помнить при сборке и эксплуатации самодельных медно-цинкозых источников постоянного тока.

Вернемся к батарее 3336Л. Разбирая ее элемент, ты, конечно, заметил, что внутренняя поверхность его цинкового стаканчика сильно изъедена. В нем даже кое-где есть сквозные отверстия. Догадываешься о причине? Да, ты прав: во время работы элемента цинк, вступая в химическую реакцию с электролитом, расходуется и разрушается.

А какова роль черной массы в мешочке, окружающей положительный электрод? Это деполяризатор — спрессованная смесь толченого угля, порошка графита и двуокиси марганца. Студенистая паста, заполняющая пространство между деполяризатором и стенками стаканчика, — электролит, представляющий собой раствор нашатыря с примесью крахмала или муки.

Во время работы гальванического элемента, а работает он принципиально так же, как и твои опытные элементы, выделяющийся водород соединяется с кислородом, содержащимся в двуокиси марганца, в результате чего поляризация не наступает.

Точно так же устроены и работают элементы 332, 343, 373, только их размеры и запасы энергии иные. Они могут служить до полного разрушения цинка отрицательного электрода. Обычно раньше истощается и высыхает электролит, в то время как Цинк еще мог бы поработать. Чтобы убедиться в этом, проведи такой опыт.

У одного из оставшихся элементов разобранной батареи удали картонку, закрывающую цинковый стаканчик. Подключи к электродам элемента вольтметр. Если элемент действительно полностью разряжен, то стрелка вольтметра будет стоять возле нулевой отметки шкалы.

Следя за стрелкой прибора, влей в элемент немного чистой воды. Уже через несколько секунд вольтметр станет показывать напряжение, постепенно возрастающее почти до 1,5 В. Элемент «оживает»! Через одну-две минуты к нему можно подключить лампочку от круглого карманного фонаря, и ее нить слегка накалится. Значит, элемент может еще поработать.

Так многие радиолюбители продлевают «жизнь», казалось бы, совершенно бросовых гальванических элементов и батарей. Попробуй и ты таким же способом временно восстановить работоспособность отслужившей свой срок батареи 3336Л. Этот опыт тебе пригодится в будущем.

Читайте также:  Почему когда касаешься предметов бьет током

Литература: Борисов В. Г. Практикум начинающего радиолюбителя.2-е изд., перераб. и доп. 1984.

Источник

OFF: Источник тока и источник напряжения. В чём разница с обычными батарейками?

Скачал программу для Android для моделирования электрических схем. Там есть элементы «источник тока» (в амперах) и «источник напряжения» (в вольтах).

Что соответствует обычной пальчиковой батарейке 1.5 В? Кстати на ней ещё написано 15 А — это к чему? Ток короткого замыкания? А сколько пальчиковых батареек нужно, чтобы убить человека?

Википедия гонит какую-то чушь про идеальные объекты (сферические табуны в вакууме).

Нужно старшей дочке объяснить электричество на примере конструктора «Знаток» 320 схем. Там и транзисторы есть, кстати.

В том что обычные батарейки не являются ни тем ни другим.

Источник тока, и источник напряжения это понятия некоторых идеальных источников электроэнергии. Которых в природе не существует, и на которые не действует закон Ома.

По поводу опасности для человека —

Считается что человека опасен ток свыше 100 мА

Т.е чтобы человеку причинить смертельную травму нужно пустить через него ток в 0,1А

Поскольку у человека нехилое сопротивление, для того чтобы пошел такой ток, нужно приложить нехилое напряжение.

Т.е нужен источник способный давать ток в 0,1А и напряжение выше 120вольт.
Чем меньше напряжение, тем меньший ток пойдет через человека.

(22) Не правильно поставлен вопрос.
Лишнего тока не бывает!

Ток это величина зависящая от многих факторов.
Т.е через него пойдет именно такой ток.

+(27)
Опять жидкостная аналогия.
Представь что телефон это труба определенного сечения.
Блок питания обеспечивает определенный напор воды (напряжение)

Так вот при данном неизменном напоре воды, количество воды прошедшее через определенное сечение будет неизменным.
Чтобы прогнать через эту трубу больше воды, надо повысить напор.

(33)Фигня.
Человек не может погибнуть от контакта с сигнальной проволочкой подключенной к аккумулятору.
Напряжение в 12вольт, обеспечит очень малый ток.

Вероятно эта проволочка была подключена к высоковольтному генератору питающемуся от аккумулятора, тогда реально.

(36)В этой аналогии напор это напряжение.

Так что да, конечно, при повышенном напоре(напряжении) труба лопнет, девайс сгорит.

А блок питания обеспечивает нормальный напор(напряжение).
Ток при этом зависит исключительно от диаметра трубы(сопротивления телефона)

(41) Ну я об этом и говорю.

Опасен ток протекающий по организму.
Но чтобы ток потек нужно напряжение.

В статическом электричестве огромное напряжение, но вот нужную силу тока оно не обеспечит (если говорить о свитере)

А вот если говорить о наэлектризованном корпусе самолета — как нефиг делать.

штук 100 в стопку таких сложить

(54) ток К.З. до 0.5 Ампера! некисло. 150 Вт при КЗ 100 батареек

(51)Там ток 0,4А
Но чтобы он отдал такой ток надо либо чтобы сопротивление человека стремилось к нулю, либо чтобы напряжение стремилось к бесконечности.

При напряжении 3,2*100=320вольт через человека пойдет ток меньше 0,1А
Так что не убъет, но тряханет.

ответ на вопрос из (0) — надо пробовать )))

вес это надежно. если не выстрелит — можно ударить по башке

(56) Очень корректная аналогия. Ничего не выгорит.
Зарядник способен дать напряжение 5в(обычно так на телефоне) и не больше.

Т.е напор ограничен.
А ток зависит исключительно от сопротивления девайса.

автомобильный аккумулятор. обычный.
ставлю в гараже на подзарядку, ставлю ток заряда — 6А.
все. это — источник тока. он отдает ток 6А и заряжает аккумулятор. и я даже не знаю, какое напряжение у аккумулятора в этот момент.
не, конечно, померять могу. но в принципе — он выдает стабилизированный (на уровне 6А) ток. А напряжение при этом гуляет в зависимости от многих факторов в больших пределах.

а вот зарядки для всяких айфонов — они в принципе выдают стабилизированное напряжение, а не стабилизированный ток. Потму зарядка, способная «выдать 2А» (в кавычках) в реале выдает ток, ограниченный стабилизированным напряжением.

Вообще когда кому то рассказываешь про электрику, лучше не употреблять слово «напряжение»
Оно только запутывает, не дает понятия.

Лучше говорить — разность потенциалов.
Тогда становится понятней, и объяснять проще.

(72)Напряжение самого автомобильного аккумулятора известно.
От 13,5 до 11В в зависимости от заряженности.

А напряжение зарядного устройства при зарядке может достигать 15-16вольт на плохих зарядках.

(7) Если бы БП был идеальным источником напряжения, то будет как в (10);
если бы БП — «источник тока», то телефон получит вдвое больший ток и напряжение (и четырехкратную мощность).

В реальности за счет внутреннего сопротивления БП будет чуть больший 1A ток и напряжение, ну и контролеры БП и телефона постараются опять таки приблизить к (10).

(77) Получить вдвое больший ток и напряжение (и четырехкратную мощность) от БП не реально!

Блок питания телефона выдает определенное напряжение, оно не может быть выше ни при каких условиях.
Ниже может быть, но не выше.

Поэтому напряжение будет не больше расчетного, а ток пойдет не больше 1А

(79) Ну так нормативы они для здорового и относительно целого человека просчитаны.

Если покромсать человека то он и без тока коньки отбросит.

Как ты в кровь то ток подашь минуя кожу? Заточенный медный провод в вену?

(81)Ну стружка железная в пальце это мелочи.
Сопротивление конечно уменьшается но не так уж и катастрофически.

В пальце тонкие кровянные каппиляры — сечение у них очень маленькое.
А маленькое сечение — синоним большого сопротивления.

Тут комплекс факторов нужен — понизить сопротивление(стружка в пальце) и подать приличное напряжение.
12вольт будет маловато.

(0) хм.. я так навскидку быстро могу только широко распространенных два прибора вспомнить, которые выступают именно в качестве источника тока и у которых мы регулируем именно ток в качестве необходимого нам параметра.
Это
1. Автомобильные зарядные устройства. Обрати внимание, у них шкала в амперах проградуирована. От них требуется именно определенный ток зарядки. Напряжение при этом вторично, некритично, и, как правило, даже не измеряется.

2. Сварочный (электросварка) аппарат. Тоже, в зависимости от электрода (двойка, тройка, четверка и т.д.), металла, режима (сварка/резка) — мы регулируем именно требуемую силу тока. Напряжение при этом также вторично, и, по большому счету, не имеет значения (да я даже и не знаю, как измерить напряжение дуги электросварки.

Вот это два прибора, которые более или менее можно назвать регулируемыми источниками тока. Не идеальными, но..
Может, кто-то еще что-то придумает/вспомнит.

(88) Оба раза мимо.
Вот на светодиоды подают определенный ток.

А в указанных вами случаях —
1)Аккумулятор в зависимости от заряженности имеет разное сопротивление.
Разряженный аккумулятор малое сопротивление, заряженный большое.

Большинство зарядных устройств работает по следующему принципу — подали напряжение, посмотрели ток.
Если ток маленький, добавили напряжения, если ток большой то убавили.

2)То же самое. Важна сила тока. Но регулируется сила тока который идет через электрод путем изменения напряжения.

Просто напряжение очень легко менять, ораничивать, увеличивать, и.т.п.

А вот чтобы ограничить ток не трогая напряжение — это надо постараться.
Это очень сложно и дорого.
И чаще всего для этого используют ШИМ.

(89) то ж какое я напряжение меняю в сварочном аппарате? нет, ты в цифрах скажи. какое напряжение у дуги электросварки.

И насчет автомобильной зарядки — я задаю/ограничиваю именно силу тока, а аппарат сам выдает требуемое напряжение (и меняет напряжение по мере необходимости) чтобы поддержать заданный/установленный ток. Напряжение в процессе зарядки меняется, а ток остается постоянным на заданном уровне.
Так что регулирую я именно ток. В обоих случаях.
А напряжение — оно изменяется источником по мере необходимости в зависимости от нагрузки. Такова особенность источника тока.

И наоборот, особенность стабилизированного источника напряжения — поддерживать заданно енапряжение. К примеру подключил я одну лампочку (на 12 В) или пять или десять — если источник напряжения позволяет, он будет поддерживать постянное стабилизированое напряжение на выхоже, меяя ток в зависимсти от нагрузки.
Такова особенность источника напряжения.

Т.е вы регулируете именно напряжение, чтобы держать ток в заданных рамках.

А в источнике тока, напряжение неизменно, а ток регулируется.

(93) А скажать какое напряжение дуги электросварки в принципе невозможно.

Вы просто неправильно представляете себе что такое напряжение.

Источник