Меню

Что называют работой тока формула работы тока



Работа и мощность тока: как мы платим за электроэнергию?

Мы используем электричество с определенными целями. Электрический ток выполняет какую-то работу, вследствие этого и функционируют наши электроприборы. Что же такое – работа электрического тока? Известно, что работа тока по перемещению электрического заряда на некотором отрезке цепи равна численно напряжению на этом участке. Если же заряд будет отличаться, например, в большую сторону, то и работа, соответственно, будет совершена большая.

Работу, которую электрическое поле совершает над свободными зарядами в проводнике называют работой тока

Мощность электрического тока

где P — мощность тока. Мощность измеряется в ваттах (1 Вт). Применяют кратные величины – киловатты, мегаватты.

Работа и мощность электрического тока связаны теснейшим образом. Фактически, работа – это мощность тока в каждый момент времени, взятая за определенный промежуток времени. Именно поэтому счетчики в

Источник

Работа электрического тока. Закон Джоуля-Ленца.

Работа электрического тока Закон ДжоуляЛенца

Для определения работы, которая совершается током, проходящим по некоторому участку цепи, нужно воспользоваться определением напряжения: . Значит,

где А — работа тока; q — электрический заряд, который прошел за определенное время через исследуемый участок цепи. Подставив в последнее равенство формулу q = It, имеем:

Работа электрического тока на участке цепи является произведением напряжения на концах это­го участка на силу тока и на время, на протяжении которого совершалась работа.

Закон Джоуля-Ленца .

Закон Джоуля — Ленца гласит: количество теплоты, которое выделяется в проводнике на участке электрической цепи с сопротивлением R при протекании по нему постоянного тока I в течение времени t равно произведению квадрата тока на сопротивление и время:

Закон был установлен в 1841 г. английским физиком Дж. П. Джоулем, а в 1842 г. подтверж­ден точными опытами русского ученого Э. X. Ленца. Само же явление нагрева проводника при прохождении по нему тока было открыто еще в 1800 г. французским ученым А. Фуркруа, которо­му удалось раскалить железную спираль, пропустив через нее электрический ток.

Из закона Джоуля — Ленца видно, что при последовательном соединении проводников, поскольку ток в цепи всюду одинаков, максимальное количество тепла будет выделяться на про­воднике с наибольшим сопротивлением. Это применяется в технике, например, для распыления металлов.

Работа электрического тока Закон ДжоуляЛенца

При параллельном соединении каждый проводник находятся под одинаковым напряжением, но токи в них разные. Из формулы (Q = I 2 Rt) видно, что, так как, согласно закону Ома , то

Работа электрического тока Закон ДжоуляЛенца

Следовательно, на проводнике с меньшим сопротивлением будет выделяться больше тепла.

Если в формуле (А = IUt) выразить U через IR, воспользовавшись законом Ома, получим Закон Джоуля — Ленца. Это лишний раз подтверждает тот факт, что работа тока расходуется на выделение тепла на активном сопротивлении в цепи.

Источник

Особенности работы тока

Время на чтение:

Сегодня электрический ток имеет большую область применения. Связано это с тем, что он переносит с собой энергию, которую можно превратить в любую форму.

Что такое работа тока

При хаотичном движении заряженных частиц в проводнике электрическое поле будет совершать работу, которую решили назвать работой тока. Определение работы тока следующее: это работа электрического поля по переносу зарядов внутри проводника.

Важно! Помимо электрических сил, на проводник действуют еще и магнитные, которые также могут совершать работу. Однако в обычных условиях она будет очень мала.

Читайте также:  Как найти время прохождения тока по участку цепи

Мощность

Абсолютно каждый электрический прибор рассчитан на поглощение энергии за единицу времени. Поэтому на практике большее значение имеет такое понятие, как мощность. Мощность — это скалярная физическая величина, в общем виде равная скорости изменения, преобразования, передачи или потребления энергии системы.

Единицы измерения

Любая физическая величина, которая может быть превращена в энергию, будет измеряться в Джоулях (Дж). 1 Джоуль равен работе при перемещении точки, к которой приложена сила, равная 1 Ньютону, умноженному на Путь в 1 метр. Получается, что 1 Дж = 1 Н · 1 м.

Единица измерения мощности — это Ватт (Вт). Он равен работе 1 Дж, совершенной за единицу времени в 1 с. Таким образом, 1 Вт = 1 Дж : 1 с

Единица измерения мощности

Формула вычисления

В 1841 году английский ученый Джеймс Джоуль сформулировал закон для нахождения количественной меры теплового воздействия электрического тока. В 1842 году этот же закон был также открыт русским физиком Эмилием Ленцем. Из-за этого он получил двойное название закона Джоуля-Ленца. В общем виде закон записывается следующим образом: Q = I² • R • t.

Он имеет достаточно обобщенный характер, так как не имеет зависимости от природных сил, генерирующих ток. Сегодня этот закон активно применяется в быту. Например, для определения степени нагрева вольфрамовой нити, используемой в лампочках.

Закон Джоуля-Ленца

Закон Джоуля-Ленца определяет количество теплоты, выделяемое током. Но, тем не менее, это поможет узнать, по каким формулам вычисляется работа электрического поля. Всё потому, что она впоследствии проявляется в виде нагревания проводника. Это говорит о том, что работа тока равна теплоте нагревания проводника (A=Q). Работа эл тока, формула: А= I² • R • t. Это не единственная формула для нахождения работы. Если использовать закон Ома для участка цепи (I=U:R), то можно вывести еще две формулы: А=I•U•t или A=U²:R.

Общая формула для того, чтобы вычислять мощность, заключается в ее прямой пропорциональности работе и обратной зависимости от времени (P=A:t). Если говорить о мощности в электрическом поле, то исходя из предыдущих формул, можно составить целых три: Р= I² • R; Р=I•U; Р=U²:R.

Закон Ома для участка цепи

Приборы для измерения тока

Электроизмерительные приборы — это особый вид устройств, которые используются для измерения многих электрических величин. К ним относятся:

  • Амперметр переменного тока;
  • Вольтметр переменного тока;
  • Омметр;
  • Мультиметр;
  • Частометр;
  • Электрические счетчики.

Амперметр

Чтобы определить силу тока в электрической цепи, необходимо применить амперметр. Данный прибор включается в цепь последовательным образом и из-за пренебрежимо малого внутреннего сопротивления не оказывает влияния на ее состояние. Шкала амперметра проградуирована в амперах.

В классическом приборе через электромагнитную катушку проходит измеряемый ток, который образует магнитное поле, заставляющее отклоняться магнитную стрелку. Угол отклонения прямо пропорционален измеряемому току.

Классический амперметр

Электродинамический амперметр имеет более сложный принцип работы. В нем находятся две катушки: одна подвижная, другая стоит на месте. Между собой они могут быть соединены последовательно или параллельно. При прохождении тока через катушки их магнитные поля начинают взаимодействовать, что в результате заставляет подвижную катушку с закрепленной на ней стрелкой отклониться на некоторый угол, пропорциональный величине измеряемого тока.

Вольтметр

Для определения величины напряжения (разности потенциалов) на участке цепи используют вольтметр. Подключаться прибор должен параллельно цепи и обладать высоким внутренним сопротивлением. Тогда лишь сотые доли силы тока попадут в прибор.

Читайте также:  Формула ватт электрического тока

Школьный вольтметр

Принцип работы заключается в том, что внутри вольтметра установлена катушка и последовательно подключенный резистор с сопротивлением не менее 1кОм, на котором проградуирована шкала вольтов. Самое интересное, что на самом деле резистор регистрирует силу тока. Однако деления подобраны таким образом, что показания соответствуют значению напряжения.

Омметр

Данный прибор используют для определения электрически активного сопротивления. Принцип действия состоит в изменении измеряемого сопротивления в напрямую зависящее от него напряжение благодаря операционному усилителю. Нужный объект должен быть подключен к цепи обратной связи или к усилителю.

Если омметр электронный, то он будет работать по принципу измерения силы тока, протекающего через необходимое сопротивление при постоянной разности потенциалов. Все элементы соединяют последовательно. В этом случае сила тока будет иметь следующую зависимость: I = U/(r0 + rx), где U — ЭДС источника, r0 — сопротивление амперметра, rx — искомое сопротивление. Согласно этой зависимости и определяют сопротивление.

Электронный омметр

Мультиметр

Приведенные в пример приборы сегодня используют лишь в школах на уроках физики. Для профессиональных задач были придуманы мультиметры. Самое обычное устройство включает в себя одновременно функции амперметра, вольтметра и омметра. Прибор бывает как легко переносимым, так и огромным стационарным с большим количеством возможностей. Название «мультиметр» в первый раз было применено именно к цифровому измерителю. Аналоговые приборы чаще называют «авометр», «тестер» или просто «Цешка».

Универсальный мультиметр

Работа тока — сложная, но очень важная тема в электродинамике. Не зная ее, не получится решить даже простейших задач. Даже электрики используют формулы по нахождению работы для проведения необходимых подсчетов.

Источник

Работа и мощность электрического тока

теория по физике 🧲 постоянный ток

При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу. Ее принято называть работой тока.

Рассмотрим произвольный участок цепи. Это может быть однородный проводник, к примеру, обмотка электродвигателя или нить лампы накаливания. Пусть за время ∆t через поперечное сечение проводника проходит заряд ∆q. Тогда электрическое поле совершит работу:

Но сила тока равна:

Тогда работа тока равна:

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.

Выражая через закон Ома силу тока и напряжение, получим следующие формулы для вычисления работы тока:

A = I 2 R Δ t = U 2 R . . Δ t

Работа тока измеряется в Джоулях (Дж).

Пример №1. Определите работу тока, совершенную за 10 секунд на участке цепи напряжением 200В и силой тока 16 А.

A = I U Δ t = 16 · 220 · 10 = 35200 ( Д ж ) = 35 , 2 ( к Д ж )

Закон Джоуля-Ленца

В случае, когда на участке цепи не совершается механическая работа, и ток не производит химических действий, происходит только нагревание проводника. Нагретый проводник отдает теплоту окружающим телам.

Закон, определяющий количество теплоты, которое выделяет проводник с током в окружающую среду, был впервые установлен экспериментально английским ученым Д. Джоулем (1818—1889) и русским Э.Х. Ленцем (1804—1865). Закон Джоуля—Ленца сформулирован следующим образом:

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

Количество теплоты измеряется в Джоулях (Дж).

Читайте также:  Какая сила тока в лампочке накаливания

Пример №2. Определить, какое количество теплоты было выделено за 2 минуты проводником при напряжении 12 В и сопротивлении 2 Ом.

Используем закон Ома и закон Джоуля—Ленца:

Q = I 2 R Δ t = ( U R . . ) 2 Δ t = U 2 R . . Δ t = 12 2 2 . . = 72 ( Д ж )

Мощность тока

Любой электрический прибор (лампа, электродвигатель и пр.) рассчитан на потребление определенной энергии в единицу времени. Поэтому наряду с работой тока очень важное значение имеет понятие мощности тока.

Мощность тока — это работа, производимая за 1 секунду. Обозначается как P. Единица измерения — Ватт (Вт).

Численно мощность тока равна отношению работы тока за время ∆t к этому интервалу времени:

Это выражение для мощности можно переписать в нескольких эквивалентных формах, если использовать закон Ома для участка цепи:

P = I U = I 2 R = U 2 R . .

Пример №3. При силе тока в электрической цепи 0,3 А сопротивление лампы равно 10 Ом. Определите мощность электрического тока, выделяющуюся на нити лампы.

P = I 2 R = 0 , 3 2 · 10 = 0 , 9 ( В т )

Выразив силу тока через заряд, прошедший за единицу времени, получим:

Мощность тока равна мощности на внешней цепи. Ее также называют мощностью на нагрузке, полезной мощностью или тепловой мощностью. Ее можно выразить через ЭДС:

P = ( ε R + r . . ) 2 R

Мощность тока на внешней цепи будет максимальная, если сопротивление внешней цепи равно внутреннему сопротивлению: R = r.

P m a x = ( ε r + r . . ) 2 r = ε 2 4 r . .

Мощность тока внутренней цепи:

P в н у т р = I 2 r = ( ε R + r . . ) 2 r

P п о л н = I 2 ( R + r ) = ε 2 R + r . .

Пример №4. ЭДС постоянного тока ε = 2 В, а его внутреннее сопротивление r = 1 Ом. Мощность тока в резисторе, подключенном к источнику, P = 0,75 Вт. Чему равно минимальное значение силы тока в цепи?

Используем формулу для нахождения полезной мощности:

P = ( ε R + r . . ) 2 R

Применим закон Ома для полной цепи:

Выразим сопротивление внешней цепи:

P = ( ε ε I . . − r + r . . ) 2 ( ε I . . − r ) = I 2 ( ε I . . − r ) = I ε − r I 2

Так как внутреннее сопротивление равно единице, получаем квадратное уравнение следующего вида:

r I 2 − I ε + P = 0

I 2 − 1 I + 0 , 75 = 0

Решив это уравнение, получим два корня: I = 0,5 и I = 1,5 А. Следовательно, наименьшая сила тока равна 0,5 А.

Подсказки к задачам

Конденсатор в цепи постоянного тока

Постоянный ток через конденсатор не идет, но заряд на нем накапливается, и напряжение между обкладками поддерживается. Напряжение на конденсаторе такое же, как на параллельном ему участке цепи.

Ток не проходит через те резисторы, что соединены с конденсатором последовательно. При расчете электрической цепи их сопротивления не учитывают.

Подсказки к задачам

W = q 2 2 C . . = C U 2 2 . .

Пример №5. К источнику тока с ЭДС ε = 9 В и внутренним сопротивлением r = 1 Ом подключили параллельно соединенные резистор с сопротивлением R = 8 Ом и плоский конденсатор, расстояние между пластинами которого d = 0,002 м. Какова напряженность электрического поля между пластинами конденсатора?

Напряжение на конденсаторе равно напряжению на резисторе, так как он подключен к нему последовательно. Чтобы найти это напряжение, сначала выразим силу тока на этом резисторе:

Применим закон Ома:

Приравняем правые части выражений и получим:

Отсюда напряжение на конденсаторе равно:

Напряженность электрического поля равна:

E = U d . . = ε R d ( R + r ) . . = 9 · 8 0 , 002 ( 8 + 1 ) . . = 72 0 , 018 . . = 4000 ( В м . . )

Вольтметр подключён к клеммам источника тока с ЭДС ε = 3 В и внутренним сопротивлением r = 1 Ом, через который течёт ток I = 2 А (см. рисунок). Вольтметр показывает 5 В. Какое количество теплоты выделяется внутри источника за 1 с?

Источник