Меню

Что называют плоскостью тока



Плотность тока — что это такое и в чем измеряется

Проходя по длине проводникового элемента, электроток распределяется по его поверхности неравномерно. Плотность электрического тока характеризует распределение токовых зарядов по поперечному сечению проводящего материала.

Неравномерное распределение электротока по проводнику

Виды электротока, условия протекания

Частицы, несущие заряд, могут перемещаться в толще проводника беспорядочно или целенаправленно двигаться в определенном направлении. Во втором случае говорят о наличии электрического тока. Основная его характеристика – наличие вектора перемещения. Вектор токового движения идентичен направлению заряженных частиц.

Хаотичное и направленное перемещение заряженных частиц

Важно! Токовый ход может быть постоянным и переменным. В первом случае поток частиц перемещается четко в одном направлении по прямой, без колебаний и возмущений. Во втором – имеют место синусоидальные колебания с определенной частотой. Для трансформации (выпрямления) переменного электротока применяют специальные устройства. Вообще для существования константного тока требуется, чтобы с одного конца проводникового элемента все время имел место избыток отрицательно заряженных частиц, а со второго – дефицит. Также требуется сила, которая будет эти заряды перемещать.

Переменный ток, в противоположность постоянному, не требует соблюдения полярности. В отличие от постоянного, он имеет частоту – так называется количество смен направления перемещения частиц за единицу времени. В стандартной бытовой сети число таких смен равно 50 в секунду. Различные приборы, питающиеся от аккумуляторных элементов и батарей, а также бытовая техника, ноутбуки, стационарные компьютеры потребляют постоянный электроток. Сама батарея является генератором постоянного токового хода, но его можно инвертировать в переменный с помощью специальных устройств.

Ток, вызываемый электрополем, принято называть током проводимости. Элементарные частицы, переносящие заряд, отличаются у разных типов проводниковых материалов. В случае металлических элементов это свободные электроны, у части полупроводниковых материалов – целенаправленно движущиеся ионы. В электролитах (в том числе применяемых в аккумуляторных батареях) ионы с плюсовым и минусовым зарядами движутся в разные стороны. Последнее характерно для всех проводников, представляющих собой жидкости.

В конвекционном электротоке электроны перемещаются под действием инерции. Еще одна разновидность тока – протекающий в вакуумных условиях (такое явление применяется в электронных лампочках). Основными характеристиками электротока являются сила и плотность тока.

Направленное перемещение электронов в проводнике

Плотность тока и мощность

Работа, которую электрополе совершает над источниками токового движения, может быть охарактеризована плотностью мощности (она равна энергии, деленной на произведение объема проводника и временного периода). Самый распространенный путь данной мощности – рассеивание во внешнее пространство в качестве тепловой энергии. Но некоторая ее доля может превращаться в механическую энергию (например, при работе электрического двигателя) или в разные типы излучения.

Закон Ома

Для токопроводящей среды, обладающей изотропными характеристиками, данный закон имеет следующий вид:

где j – плотность идущего электротока, Е – полевая напряженность в рассматриваемой точке (скалярная величина, как и предыдущая), а σ – удельная проводимость средового окружения.

Что касается работы электрополя для такой среды (w), то она может быть выражена следующими формулами:

w= E2* σ=j2/σ=p*j2 (p здесь – удельное сопротивление).

Выражение для работы в этом случае примет вид:

w=E* σ *E=j*p*j (E и j в данном случае – скалярные величины).

В матрице справа налево умножают столбчатый вектор на строчной и на матрицу. Тензорные величины р и σ генерируют релевантные им квадратичные формы.

Единица измерения плотности электротока

Для выражения плотностной величины применяется производная от единиц измерения токовой силы (Ампер) и площади поперечного разреза (квадратный метр), а также дольных и кратных указанным. Обычно плотность измеряется в амперах, разделенных на квадратный метр (А/м2). Вместо слова «плотность» иногда используют «насыщенность электрического тока».

Важно! Поскольку величина имеет направление, она относится к категории векторных (или скалярных). Этот вектор проходит вдоль оси электрического тока.

Формула вычисления

Рассматриваемая величина находится в обратной зависимости от размеров сечения (чем больше площадь, тем меньше плотность тока) и временного периода прохождения электрозаряда и в прямой – от величины этого заряда.

Это можно записать так:

j=Δq/ΔtΔS (q тут – элементарно малый заряд, t – бесконечно малый промежуток времени, а S – площадь сечения).

Так как токовая сила выражается как частное заряда и временного промежутка его прохода, формулу можно записать и так:

Формула плотности тока с опорой на параметры перемещающихся зарядов будет выглядеть так:

j=q*n*V (V тут – скорость, а n – концентрация электронных частиц).

4-вектор плотности тока

Данное обозначение из теории относительности призвано обобщать явление плотности на пространственно-временной континуум, оперирующий четырьмя измерениями. Такой четырехвектор включает в себя трехвекторное выражение токовой плотности (скалярной величины) и имеющей объем плотности электрического заряда. Использование четырехвектора дает возможность формулировать электродинамические уравнения ковариантным образом.

Рассматриваемая величина необходима для описания концентрации и равномерности распределения заряженных микрочастиц по проводниковому материалу, в котором существует та или иная форма электротока. При оперировании с выражениями, содержащими величину, нужно не забывать о ее скалярности.

Видео

Источник

Электрический ток и его плотность

ads

Электрическим током называют направленное движение свободно заряженных частиц под действием электрического поля.

Как правило движение зарядов происходит в некоторой среде (веществе или вакууме), являющейся проводником для электрического тока. Движущимися в среде заряженными частицами могут быть электроны (в металлах, полупроводниках) или ионы (в жидкостях и газах).

Упорядочное движение носителей заряда под действием электрического поля

Рис. 1 Электрический ток

Для возникновения и протекания электрического тока в любой токопроводящей среде необходимо выполнение двух условий:

  1. Наличие в среде свободных носителей заряда;
  2. Наличие электрического поля.

Для поддержания электрического поля, например в проводнике, к его концам необходимо подключить какой-либо источник электрической энергии (батарейку или аккумулятор). Поле в проводнике создается зарядами, которые накопились на электродах источника тока под действием сил (химических, механических и т.д.).

За направление тока условно принято принимать направление движения положительных зарядов. Следовательно, условно принятое направление тока обратно направлению движения электронов – основных отрицательных электрических носителей заряда в металлах и полупроводниках.

Понять явление электрического тока достаточно сложно так как его невозможно увидеть глазами. Для лучшего понимания процессов в электронике проведем аналогию между электрическим током в проводнике и водой в тонкой трубочке. В трубочке есть вода (носители заряда в проводнике), но она неподвижна, если трубочка лежит на горизонтальной поверхности и уровень высот ее концов (значения потенциалов электрического поля) одинаковый. Если трубочку наклонить так, что один конец станет выше другого (появится разность потенциалов), вода потечет по трубочке (электроны придут в движение).

Читайте также:  Как определить входное напряжение при входном токе

Способность вещества проводить электрический ток под действием электрического поля называется электропроводностью. Каждому веществу соответствует определенная степень электропроводности. Ее значение зависит от концентрации в веществе носителей заряда – чем она выше, тем больше электропроводность. В зависимости от электропроводности все вещества делятся на три большие группы: проводники, полупроводники и диэлектрики.

Электрический ток может менять направление и величину во времени (переменный ток) или оставаться неизменным (постоянный) (рисунок 2).

Рис. 2. Постоянный и переменный электрические токи

Рис. 2. Постоянный и переменный электрические токи

Количественной мерой электрического тока служит сила тока I, которая определяется числом электронов (зарядов) q, проходящих через импровизированное поперечное сечение проводника в единицу времени t (рисунок 3).

Формула силы тока

Рис. 3. Сила тока в проводнике

Рис. 3. Сила тока в проводнике

Для постоянного тока представленное выше выражение можно записать в виде

Сила тока

Ток в системе СИ измеряется в амперах, [А]. Току в 1 А соответствует ток, при котором через поперечное сечение за 1 секунду проходит электрический заряд, равный 1 Кл.

Плотность электрического тока

Под плотностью тока j понимается физическая величина, равная отношению тока I к площади поперечного сечения S проводника. При равномерном распределении тока по поперечному сечению проводника.

J = I/S

Плотность тока в системе СИ измеряется в амперах на миллиметр квадратный, [А/мм 2 ].

Рассмотрим плотность тока в проводнике с разным поперечным сечением. Например, соединены два проводника с различными сечениями: первый толстый провод с большим поперечным сечением S1 второй тонкий провод с сечением S2. К концам которых приложено постоянное напряжение (рисунок 5) в следствии чего через них протекает постоянный ток с одинаковой силой тока.

Рис.5 Плотность тока в проводниках с различными сечениями.

Рис.5 Плотность тока в проводниках с различными сечениями.

Предположим, что сила тока через поперечное сечение толстого проводника S1 и тонкого провода S2 различная. Из этого предположения вытекает, что за каждую единицу времени через сечения S1 и S2 протекают различные значения электрического заряда. Следовательно, в объёме провода, расположенного между двумя указанными сечениям происходит непрерывное скапливание зарядов, и напряженность электрического поля изменялась бы, чего не может быть, так как при изменении электрического поля ток был бы непостоянен. В проводах с различным сечением при одном и том же токе плотность тока обратно пропорциональна площади поперечного сечения.

Плотность тока — векторная величина.

Формула пдотности тока

Рис. 4. Графическая интерпретация плотности тока j

Рис. 4. Графическая интерпретация плотности тока j

Направление вектора Вектор плотность тока совпадает с направлением положительно заряженных зарядов и, следовательно, с направлением самого тока I.

Если концентрация носителей тока равна n, каждый носитель имеет заряд e и скорость его движения в проводнике равна v (рисунок 3), то за время dt через поперечное сечение S проводника переносится заряд

Формула плотности тока

В этом случае величину силы тока I можно представить в виде зависимости

Формула силы тока

а плотность тока

Сила тока через произвольную поверхность определяется через поток вектора плотности тока, как интеграл по произвольной (в общем случае) поверхности S (рисунок 6)

Формула плотность тока

Рис. 6. Сила тока через произвольную поверхность S

Рис. 6. Сила тока через произвольную поверхность S

От величины плотности тока зависит важный показатель – качество электропередачи. Фактически этот показатель зависит от степени нагрузки проводника (хотя и не только от нее). В зависимости от значения плотности тока принято выбирать сечение проводов – это связано с наличием у проводников сопротивления, в результате которого происходит нагрев жил проводника вплоть до его расплавления и выхода из строя.

Источник

Сила и плотность тока. Линии тока

Сила тока I для тока, протекающего через некоторую площадь сечения проводника S эквивалентна производной заряда q по времени t и количественно характеризует электрический ток.

Таким образом выходит, что сила тока — это поток заряженных частиц через некоторую поверхность S .

Электрический ток является процессом движения как отрицательных, так и положительных зарядов.

Перенос заряда одного знака в определенную сторону равен переносу заряда, обладающего противоположным знаком, в обратном направлении. В ситуации, когда ток образуется зарядами и положительного, и отрицательного знаков ( d q + и d q − ), справедливым будет заключение о том, что сила тока равна следующему выражению:

I = d q + d t + d q — d t .

В качестве положительного определяют направление движения положительных зарядов. Ток может быть постоянным, когда ни сила тока, ни его направление не претерпевают изменений с течением времени, или, наоборот, переменным. При условии постоянства, формула силы тока может выражаться в следующем виде:

где сила тока определена в качестве заряда, который пересекает некоторую поверхность S в единицу времени. В системе С И роль основной единицы измерения силы тока играет Ампер ( А ) .

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Выделим в проводнике, в котором протекает ток, малый объем d V случайной формы. С помощью следующего обозначения » open=» υ определим среднюю скорость движения носителей зарядов в проводнике. Пускай n 0 представляет собой концентрацию носителей заряда. На поверхности проводника выберем пренебрежительно малую площадку d S , которая расположена ортогонально скорости » open=» υ (рис. 1 ).

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Проиллюстрируем на поверхности площадки d S очень короткий прямой цилиндр, имеющий высоту » open=» υ d t . Весь массив частиц, которые располагались внутри такого цилиндра за время d t пересекут плоскость d S и перенесут через нее, в направлении скорости » open=» υ , заряд, выражающийся в виде следующего выражения:

d q = n 0 q e » open=» υ d S d t ,

где q e = 1 , 6 · 10 — 19 К л является зарядом электрона, другими словами отдельной частицы или же носителя тока. Разделим приведенную формулу на d S d t и получим:

где j представляет собой модуль плотности электрического тока.

j = n 0 q e » open=» υ ,

где j является модулем плотности электрического тока в проводнике, в котором заряд переносится электронами. В случае, если ток появляется как результат движения нескольких типов зарядов, то формула плотности тока может быть определена в виде следующего выражения:

j = ∑ n i q i » open=» υ i i ,

где i представляет собой носитель заряда. Плотность тока — это векторная величина. Снова обратим внимание на рисунок 1 . Пускай n → представляет собой единичный перпендикуляр к плоскости d S . В случае, если частицы, переносящие заряд, являются положительными, то переносимый ими заряд в направлении нормали больше нуля. В общем случае переносимый в единицу времени элементарный заряд может быть записана в следующем виде:

Читайте также:  Расчет транзисторного усилителя при постоянном токе

d q d t = j → n → d S = j n d S .

Формула приведенная выше справедлива также в том случае, когда плоскость площадки d S неортогональная по отношению к вектору плотности тока. По той причине, что составляющая вектора j → , направленная под прямым углом к нормали, через сечение d S электричества не переносит. Исходя из всего вышесказанного, плотность тока в проводнике окончательно запишем, применяя формулу j = n 0 q e » open=» υ в таком виде:

j → = — n 0 q e » open=» υ → .

Таким образом, плотность тока эквивалентна количеству электричества, другими словами заряду, который протекает за одну секунду через единицу сечения проводника. В отношении однородного цилиндрического проводника справедливым будет записать, что:

где S играет роль площади сечения проводника. Плотность постоянного тока равна по всей площади сечения проводника. Для двух разных сечений проводника ( S 1 , S 2 ) с постоянным током справедливо следующее равенство:

j 1 j 2 = S 2 S 1 .

Основываясь на законе Ома для плотности токов можно записать такое выражение:

где λ обозначает коэффициент удельной электропроводности. Определив плотность тока, мы имеем возможность выразить силу тока в следующем виде:

где интегрирование происходит по всей поверхности S любого сечения проводника. Единица плотности тока A м 2 .

Источник

Определение и единицы измерения силы тока и плотности тока

За количественную меру тока в проводнике (обычном металлическом проводе) принимают величину электрического заряда, проходящую через поперечное сечение

проводника в единицу времени: СИ. (А = Кл/с).

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы тока, протекающего через единицу площади. Например, при равномерном распределении плотности тока и всюду ортогональности ее плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока: . Единица измерения — 1 А/м2.

50. Физический смысл сопротивления проводника. От чего и как зависит?(стр. 32)

Сопротивление проводника должно отражать его внутренние свойства, определяющие условия протекания по проводнику носителей тока. При данной температуре оно зависит от материала проводника и его геометрии (длины l и площади поперечного сечения проводника S ):

Удельное сопротивление проводника (единица измерения – Ом·м) характеризует электрические свойства материала проводника.

52. Закон Ома для участка цепи, содержащего ЭДС , в интегральной форме. В чем состоит физический смысл этого равенства?(стр. 36)

Равенство называют законом Ома для участка цепи, содержащего ЭДС. Из закона видно , что падение напряжения на участке цепи, содержащем ЭДС, не равно разности потенциалов на его концах : .

R- сопротивление всей внешней электрической цепи. [Ом]

I- сила постоянного тока. [А]

ε – ЭДС источника

r- внутреннее сопротивление источника ЭДС

54. Формулы для расчета эквивалентной ЭДС при параллельном и последовательном соединении проводников. (взято со справочника!)

Причина возникновения ЭДС – сила Лоренца.

ЭДС – электродвижущая сила [Вольт].

Эта формула используется в любом проводнике, движущемся в магнитном поле, если . Если между векторами и есть угол, то используется формула . Так как , а , то .

● Другой способ вывода формулы ЭДС в движущемся проводнике.

Т.к. электроны начинают под действием силы Лоренца перемещаться к одному из концов проводника, то возникает электрическое поле. Оно будет возрастать до тех пор, пока электрическая сила не уравновесит силу Лоренца.

. Учитывая, что получим:

( — угол между направлениями тока и ).

Явление существенно при движении проводников значительной длины или с большой скоростью. Знак можно определить по правилу правой руки.

56. Напишите уравнение баланса мощностей в замкнутой электрической цепи. При каком условии мощность во внешней цепи будет максимальна? (стр. 36)

1. Используя закон Ома , => — баланс мощностей в замкнутой цепи: мощность, вырабатываемая источником, расходуется на мощность, выделяющуюся во внешней цепи, и мощность, теряемую в источнике.

— полная мощность источника

R- сопротивление всей внешней электрической цепи. [Ом]

I- сила постоянного тока. [А]

ε – ЭДС источника

r- внутреннее сопротивление источника ЭДС

2. Максимального значения ( ) мощность достигает при силе тока . Таким образом, получением максимально возможной мощности от данного источника тока происходит при , что называется согласованием нагрузки.

58. Напишите закон Джоуля-Ленца в дифференциальной и интегральной формах. Поясните смысл отдельных величин. (стр. 40; http://frutmrut.ru/zakon-dzhoulya-lenca/)

Закон Джоуля-Ленца в локальной (дифференциальной) форме предполагает связь локальных характеристик протекания тока с теплом, выделяющимся в единице объема проводника в единицу времени (удельной тепловой мощностью ).

Закон Джоуля-Ленца в интегральной форме (в тонких проводах):

— Количество теплоты, выделяемое током силой I, текущим по проводнику с сопротивлением R за промежуток времени от 0 до t.

— удельная тепловая мощность [Вт]

— Плотность электрического тока ( вектор плотности тока) [A/м 2 ]

— Напряжённость электрического поля [В/м]

— Проводимость среды ( удельная проводимость)

— Сила тока в проводнике [А]

60. В чем состоит опыт Стюарта и Толмена и его результат? (стр. 40)

(1916) С помощью баллистического гальванометра был измерен заряд, проходящий через поперечное сечение проводника за время торможения. Расчеты показали, что удельный заряд носителя очень близок к удельному заряду электрона. Таким образом, было доказано, что носителями тока в металлах являются свободные электроны.

62. От чего и как зависит проводимость металлов согласно классической электронной теории ? (стр. 42-43)

Из следует, что в отсутствии столкновений, когда длина свободного пробега неограниченно велика, так же велика и проводимость металла. Получается, что, электрическое сопротивление металла, согласно классической теории, обусловлено столкновениями с ионами кристаллической решетки.

64. Какие утверждения можно сделать, опираясь на совокупность опытных фактов, касающихся взаимодействия движущихся зарядов? (стр. 45)

Многочисленные опытные факты, касающиеся взаимодействия движущихся электрических зарядов (притяжение или отталкивание электрических токов, действие тока на магнитную стрелку, рамку с током и т.п.), позволяют сформулировать следующие утверждения, базирующиеся на полевом принципе взаимодействия:

— движущиеся электрические заряды (токи) видоизменяют свойства окружающего их пространства, порождают магнитное поле;

— магнитное поле проявляет себя тем, что действует на находящиеся в нем другие движущиеся электрические заряды (токи) с некоторой силой.

Читайте также:  Лечение сердца током под наркозом

66. Напишите формулы сил Ампера и Лоренца, по какому правилу определяется их направление? Сформулируйте это правило. (стр. 48)

● Сила Лоренца. На заряд q, движущийся со скоростью в магнитном поле индукцией ,действует сила (Лоренца) .

Направление силы проще всего определить с помощью правила левой руки — расположить левую руку так, чтобы вытянутые пальцы указывали направление движения положительного заряда, вектор индукции входил в ладонь, тогда отогнутый большой палец укажет направление действия силы (рис. 18.5). Если заряд отрицательный, направление вектора силы будет противоположным. Важно помнить, что вектор силы Лоренца перпендикулярен плоскости, в которой лежат вектора и . Формула силы Лоренца является результатом обобщения многочисленных опытных фактов.

● Сила Ампера. Сила, действующая на проводник с током расположенный в магнитном поле, есть результат действия сил Лоренца на движущиеся по проводнику электрические заряды.

Так как проводник – объект протяженный, и отдельные его участки расположены в разных областях поля, имеет смысл говорить о силе, действующей на элемент тока. Эта сила называется силой Ампера.

Принцип суперпозиции сил Лоренца позволяет написать:

68. В чем состоит смысл вектора магнитной индукции? (стр. 45 и http://ru.wikipedia.org/wiki/Магнитная _индукция)

Согласно правилу векторного произведения , вектор индукции перпендикулярен плоскости, в которой лежат вектора, и направлен по правилу правого винта.

Магнитная индукция определяет, с какой силой F магнитное поле действует на заряд q, движущийся со скоростью .

Более конкретно, B — это такой вектор, что сила Лоренца F, действующая со стороны магнитного поля на заряд q, движущийся со скоростью , равна , где α — угол между векторами скорости и магнитной индукции (направление вектора F перпендикулярно им обоим и направлено по правилу буравчика).

70. Сформулируйте словесно и в виде формулы теорему Гаусса для магнитного поля. (стр. 49)

Поток вектора магнитной индукции поля точечного заряда через произвольную замкнутую поверхность будет равен нулю .

Таким образом, поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю.

B — Магнитная индукция [Тесла=Тл]

72. Какая величина называется магнитным моментом? (стр. 56)

Магнитный момент рамки с током – вектор, равный произведению силы тока в рамке на вектор площади рамки. , где I – сила тока в контуре [А], – площадь контура [м 2 ], — магнитный дипольный момент [A∙ м 2 ].

Магнитный момент можно считать количественной мерой, определяющей индукцию магнитного поля диполя на больших расстояниях от источника.

74. В чем состоит причина изменения вектора магнитной индукции в присутствии вещества? (стр. 54)

Присутствие вещества оказывает определенное влияние на магнитное поле, образованное, например, макротоками (токами, текущими по проводам).Для большого класса веществ (исключая ферромагнетики) выполняется прямая пропорциональность между индукцией внешнего поля и индукцией поля в веществе. Этот факт записывают в виде .

Формально, учет влияния среды сводится к введению коэффициента пропорциональности μ , характеризующего ее магнитные свойства и определяемого опытным путем. Величина μ , показывает, как и во сколько раз индукция поля в веществе отличается от индукции поля в вакууме при тех же источниках и называется относительной магнитной проницаемостью вещества.

С учетом , для индукции поля в присутствии вещества, соответственно, находим . Напряженность магнитного поля в СИ измеряется в А/м (ампер/метр).

76. Дайте определение вектору намагниченности, как он связан с напряженностью внешнего магнитного поля?(стр. 57-58)

Намагниченность – векторная физическая величина, характеризующая магнитное состояние макроскопического физического тела.

Намагниченность вещества – упорядочение, моментов относительно этого поля. Чем сильнее поле , тем лучше упорядоченность , тем сильнее намагниченность вещества.

, — [А·м −1 ], V – объем [м 3 ], P – мощность [Вт].

Намагниченность принято связывать не с магнитной индукцией, а с напряженностью поля. Полагают, что в каждой точке магнетика , где χ – магнитная восприимчивость.

78. Каковы характерные особенности диамагнетиков? (стр. 60)

Появление в веществе индуцированного магнитного момента в направлении противоположном внешнему полю, что ослабляет его.

80. Каковы характерные особенности парамагнетиков?(стр. 62)

Для парамагнетиков характерно – магнитный момент атома отличен от нуля мало по величине и уменьшается с ростом температуры; .

82. Каковы характерные особенности ферромагнетиков?(стр. 63)

Сильномагнитные вещества, , обладающие явлением магнитного гистерезиса.

84. Что называют магнитным доменом?

Домен – область спонтанной намагниченности в ферромагнитном кристалле.

86. В чем состоит правило Ленца? Поясните ответ рисунками.(стр. 66)

Правило Ленца определяет направление индукционного тока и гласит: Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

88. В чем состоит гипотеза Максвелла?(стр. 68)

Максвелл предположил, что появление ЭДС индукции в неподвижном контуром вызвано вихревым электрическим полем, порождаемое переменным магнитным полем.

90. Поясните физический смысл индуктивности проводника применительно к замкнутому контуру.(стр. 69)

Индуктивность контура показывает, какой магнитный поток пронизывает контур при силе тока в нём равном 1 А. Единица измерения индуктивности: [L]=Гн (генри).

92. Напишите дифференциальное уравнение и закон изменения силы тока при замыкании электрической цепи.(стр. 71)

Любое изменение тока в цепи порождает появление в ней ЭДС самоиндукции.

94. Напишите формулы для энергии магнитного поля. На каком основании можно утверждать, что магнитное поле обладает энергией?(стр. 72)

Опыт с лампочкой доказывает о существовании энергии магнитного поля, т.к. после отключения источника питания некоторое время лампочка продолжает гореть.

96. Какое из уравнений Максвелла отражает тот факт, что источником электрического поля являются электрические заряды?(стр. 75)

Согласно уравнениям Максвелла (первое и третье), источниками электрического поля могут быть либо непосредственно электрические заряды, либо меняющиеся во времени магнитные поля.

98. Что называют током смещения?(стр. 73)

, ток протекает через конденсатор, где dq- заряд, пришедший на обкладку конденсатора за время dt.

100. В чем состоит физический смысл теоремы о циркуляции, входящей в уравнения Максвелла? (стр. 73)

Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции.

¨ Карев А. С., Флеров В. Д. , Михайлова А.А., Прахова К. А.

Источник