Меню

Что называется током срабатывания реле



Б) Ток срабатывания и ток возврата реле

Основные типы электромагнитных реле

На электромагнитном принципе выполняются реле трех основных типов: реле с втягивающимся якорем, реле с поворотным якорем и реле с поперечным движением якоря.

Реле с втягивающимся якорем (рис. 3-1) состоит из неподвижного сердечника (полюса) 1, катушки (обмотки)7, стального якоря 2, подвижного контакта 4, укрепленного на якоре с помощью изоляционной планки, неподвижных контактов 3, упора 6 и противодействующей пружины 5.

При отсутствии тока в реле якорь под влиянием пружины и собственного веса находится в нижнем положении, на упоре. При подаче тока в катушку реле возникает магнитный поток, который намагничивает сердечник 1 и якорь 2. В результате этого якорь притягивается к сердечнику и укрепленный на нем контакт 4 замыкает контакты 3.

С помощью электромагнитной системы такого типа выполняются реле прямого действия (см. рис. 3-7—3-11), отключающие и включающие электромагниты приводов выключателей и другие аппараты.

Реле с поворотным якорем (рис. 3-2, а) и реле с поперечным движением якоря (рис. 3-2, б) состоят из стального сердечника (магнитопровода) 1, катушки (обмотки) 7, стального якоря 2, подвижного контакта 4, укрепленного на якоре (рис. 3-2, а) или

на оси якоря (рис. 3-2, б), неподвижных контактов 3, упора 6 и противодействующей пружины 5. Действие этих реле аналогично действию рассмотренного выше реле с втягивающимся якорем.

Сила притяжения, воздействующая на якорь электромагнитных реле, определяется выражением

Из (3-1) следует, что сила притяжения FЭ прямо пропорциональна произведению квадрата тока, проходящего по обмотке реле I 2 , на квадрат числа витков и обратно пропорциональна квадрату расстояния от якоря до сердечника l 2 ( — коэффициент пропорциональности, учитывающий магнитные свойства стали и особенности конструктивного выполнения реле).

б) Ток срабатывания и ток возврата реле

Момент притяжения якоря реле к неподвижному сердечнику называется моментом срабатывания реле, а наименьший ток, при котором оно срабатывает, называется током срабатывания реле и обозначается IC.P.

Из приведенного определения тока срабатывания реле следует, что пограничное условие срабатывания реле наступает, когда электромагнитная сила FЭ, с которой якорь притягивается к неподвижному сердечнику, становится равной противодействующей механической силе FM, складывающейсяиз силы пружины и веса якоря, т. е. когда

Подставляя это условие в выражение (3-1), получаем:

Если после срабатывания реле постепенно уменьшать ток в его обмотке, то электромагнитная сила будет уменьшаться, и, когда она станет меньше противодействующей механической силы, якорь реле вернется в исходное положение. Момент возвращения якоря в исходное положение называется моментом возврата реле, а наибольший ток, при котором происходит возврат реле, называется т о-ком возврата реле и обозначается IB.P.

Отношение тока возврата к току срабатывания называется коэффициентом возврата реле:

Выше были рассмотрены электромагнитные реле, которые срабатывают при увеличении тока, проходящего в обмотке реле. Такие реле называются реле увеличения тока (напряжения) или реле тока (напряжения) максимальные. У реле максимальных ток (напряжение) срабатывания больше тока (напряжения) возврата, поэтому коэффициент возврата у этих реле всегда меньше единицы.

Электромагнитные реле этих же конструкций могут работать с нормально притянутым якорем. В этих случаях обмотка реле постоянно обтекается током такой величины, при которой FЭпревышает FM и исходным рабочим положением реле является положение, когда якорь реле притянут к сердечнику и связанный с ним контакт 4 (рис. 3-1, 3-2) замыкает неподвижные контакты 3.

Реле срабатывает, когда ток в обмотке уменьшается до величины, при которой FЭ становится меньше FM. Наибольшая величина этого тока называется током срабатывания. Реле возвращается в исходное положение, когда ток в обмотке опять возрастет и FЭ превысит FM. Наименьшая величина этого тока называется током возврата реле.

Таким образом, рассмотренные реле срабатывают при уменьшении тока в обмотках и поэтому называются реле уменьшения тока (напряжения) или реле тока (напряжения) минимальные.

У реле минимальных ток срабатывания меньше тока возврата, поэтому коэффициент возврата у этих реле всегда больше единицы.

Источник

3. Реле

Реле – автоматические приборы управления, обладающие релейным действием, т.е. скачкообразным изменением состояния управляемой цепи (например, её замыкание или размыкание) при заданных значениях величин, характеризующих определенное отклонение режима контролируемого объекта.

Электрические – реагируют на электрические величины.

Механические – реагируют на неэлектрические величины: скорость истечения жидкости или газа, уровень жидкости.

Тепловые – реагируют на количество выделенного тепла или изменение температуры.

3.1. Электромагнитные реле тока и напряжения

3.1.1. Принцип действия

Существуют три основные разновидности конструкций электромагнитных реле:

1) с втягивающимся якорем;

2) с поворотным якорем;

3) с поперечным движением якоря.

Каждая конструкция содержит: электромагнит, состоящий из стального сердечника и обмотки, стальной подвижный якорь, несущий подвижный контакт, неподвижные контакты и противодействующую пружину.

Проходящий по обмотке ток I р создает намагничивающую силу I р w р , под действием которой возникает магнитный поток Ф, замыкающийся через сердечник электромагнита, воздушный зазор и якорь. Якорь намагничивается и притягивается к полюсу электромагнита, переместившись в конечное положение, якорь своим подвижным контактом замыкает неподвижные контакты реле.

Ток срабатывания I ср – наименьший ток, при котором реле срабатывает, Iср – это ток, при котором электромагнитная сила превосходит силу сопротивления пружины, трения и массы.

Читайте также:  Трансформатор тока в телевизоре

Ток срабатывания регулируют: изменяя количество витков обмотки реле, I ср меняется ступенчато; регулируя пружину, Iср меняется плавно.

Ток возврата – при уменьшении тока в обмотках реле происходит возврат притянутого якоря в исходное положение под действием пружины.

I воз – наибольший ток в реле, при котором возвращается в начальное положение.

У реле, реагирующих на возрастание тока (максимальных реле), Iср > I воз ® k воз

По мере перемещения якоря воздушный зазор уменьшается, магнитное сопротивление уменьшается. Электромагнитный момент увеличивается, а сила противодействующей пружины остается постоянной, возникает избыточный момент. Для возврата якоря необходимо уменьшить ток.

Реле минимального действия – реле, действующее при уменьшении тока.

Для срабатывания необходимо уменьшить ток до значения, при котором момент пружины превзойдет электромагнитный момент.

I ср – наибольший ток, при котором отпадает якорь реле.

I воз – наименьший ток, при котором втягивается якорь реле,

3.1.2. Работа электромагнитного реле на переменном токе

Электромагнитная сила F Э имеет пульсирующий характер. Притянутый якорь реле непрерывно вибрирует. Это вызывает дребезг контактов при срабатывании, что приводит к их подгоранию, изнашиваются оси. При большом моменте инерции якоря он не успевает следовать за быстрыми изменениями знака результирующей силы. Если же момент инерции якоря недостаточен, то для устранения вибрации применяют расщепление магнитного потока обмотки на две составляющие, сдвинутые по фазе.

Расщепление магнитного потока производится либо с помощью короткозамкнутого витка (рис. 3.1.4), либо обмотка реле выполняется двумя параллельными секциями с разным угловым сдвигом (рис. 3.1.5).

Источник

Параметры реле

Параметры реле делятся на основные и не основные. Ориентироваться надо на основные параметры реле, т.к. именно они характеризуют их эксплуатационные возможности и область применения и в конечном итоге влияют на нормальную работоспособность реле.

В свою очередь, основные параметры делятся на:

  1. Электрические: чувствительность, рабочее напряжение (ток), напряжение (ток) срабатывания, напряжение (ток) отпускания, сопротивление контактов, сопротивление обмотки, коммутационная способность, электрическая изоляция.
  2. Временны´е: время срабатывания, время отпускания, время дребезга контактов.

Электрические параметры реле

• Чувствительность реле — способность срабатывать при определённом значении мощности, подаваемой на обмотку реле. Определяется магнитодвижущей силой (МДС) срабатывания. Если сравнивать между собой разные реле, то наиболее чувствительное будет то, у которое срабатывает при меньшей МДС. При этом якорь реле должен чётко притягиваться и контакты всех групп должны замкнуться/разомкнуться.

В справочниках обычно такой параметр как чувствительность не приводится. Он вычисляется из сопротивления обмотки и тока срабатывания.

• Рабочее напряжение (ток).
Техническими условиями для конкретных типов реле устанавливается рабочее напряжение (ток), при питании которым обеспечивается нормальное функционирование реле. В технической документации на конкретное исполнение реле указывается его значение с допусками. При подаче на обмотку реле напряжения (тока) в указанных пределах, оно должно нормально функционировать.

• Напряжение (ток) срабатывания.
Это один из параметров реле, определяющий его чувствительность. Это минимальное напряжение (ток) при котором реле должно нормально сработать, т.е. переключить все свои контакты. А уже для дальнейшего удерживания якоря на обмотку реле надо подавать рабочее напряжение (ток), описанное в предыдущем пункте.

В технической документации данный параметр обязательно приводится для каждого исполнения реле.

Данный параметр является контрольным. Он характеризует устойчивость всех элементов конструкции и стабильность регулировки реле.

• Напряжение (ток) отпускания.
Обязательно приводится в технической документации на каждое исполнение реле как для нормальных условий эксплуатации, так и для условий, когда воздействуют различные факторы.

Отпускание реле — это не что иное, как возвращение контактов в исходное состояние. Происходит оно при снижении напряжения (тока) в обмотке реле до уровня, при котором якорь больше не может удерживаться в сработанном положении и возвращается в исходное состояние выключенного реле. Все контакты также переключаются в исходное состояние. Нормально замкнутые становятся замкнутыми, нормально разомкнутые — разомкнутыми.

Существует такой показатель, как коэффициент возврата. Это отношение тока отпускания к току срабатывания. Значение этого коэффициента у разных реле колеблется в очень больших пределах — от 0.1 до 0.98. Улучшение коэффициента возврата достигается путём сближения характеристик изменения электромагнитной силы, создающей магнитный поток, и силы пружины, противодействующей этому потоку. Также улучшения коэффициента возврата можно достичь путём уменьшения хода подвижной системы и снижения трения в её осях.

• Сопротивление обмотки.
Сопротивление обмотки — это активное сопротивление обмотки реле с допусками, измеренное на постоянном токе. Обязательно приводится в технической документации и справедливо для нормальной температуры окружающей среды.

• Сопротивление контактов электрической цепи.
Оно складывается из сопротивления элементов цепи контактов и сопротивления контактирующих поверхностей. Измерить сопротивление контактирующих поверхностей в реле очень сложно. Поэтому оно оценивается по сопротивлению всей цепи контактов.

Данный параметр может сильно изменяться как в процессе эксплуатации реле, так и в период доставки/транспортировки, т.к. зависит от многих факторов.

Читайте также:  Как вычислить ударный ток

Попадание грязи на контакты реле влечёт за собой увеличение падения напряжения на контактах. Как следствие этого — повышенный нагрев контактов, который способен вообще вывести контактную пару из строя. Поэтому в технической документации как правило указывают сопротивление контактов на период поставки.

• Коммутационная способность контактов реле.
Определяется значением мощности, коммутируемой контактами реле, выполняющими определённое количество коммутаций.

Важно понимать, что существует такая вещь, как коррозия контактов. И она сильно зависит от коммутируемой мощности. Но проявляется она при токах в 100 мА и более. При меньших токах основное влияние на работоспособность реле оказывает механический износ подвижной системы и контактов.

В тех. документации как правило указан диапазон коммутируемых напряжений и токов, при которых гарантируется конкретное число коммутаций.

Максимальная мощность, которую способно коммутировать реле, ограничивается температурой нагрева контактов, при которой снижается механическая прочность материала контактов.

• Электрическая изоляция.
Характеризует электроизоляционные свойства реле. Это способность изоляции реле выдерживать перенапряжения (кратковременно и длительно), неизбежно возникающие в процессе эксплуатации аппаратуры. Изоляция реле определяется электрической прочностью промежутков — воздушных (межконтактных) зазоров и по поверхности диэлектрика платы реле. По этим промежуткам судят о токах утечки реле.

Временны´е параметры реле

• Время срабатывания — время, прошедшее с момента подачи напряжения на обмотку реле до первого замыкания нормально разомкнутых контактов.

• Время дребезга.
Иногда оговаривается в технической документации. Дребезг возникает после удара подвижных контактов о неподвижные.

• Время отпускания.
Определяется временем от момента снятия напряжения с катушки реле до момента замыкания нормально замкнутого контакта.

Источник

Что называется током срабатывания реле

Устройство и принцип действия электромагнитных реле . Принцип действия электромагнитных реле основан на притяжении стальной подвижной системы к электромагниту при прохождении тока по его обмотке [15,22].

На рис.2.2 представлены три основные разновидности конструкций электромагнитных реле, содержащих: электромагнит 1, состоящий из стального магнитопровода и обмотки; стальную подвижную систему (якоря) 2, несущую подвижный контакт 3; неподвижные контакты 4; противодействующую пружину 5.


Проходящий по обмотке электромагнита ток I р создает магнитодвижущую силу (МДС) wPIP , под действием которой возникает магнитный поток Ф 1 , замыкающийся через магнитопровод электромагнита 1, воздушный зазор δ и подвижную систему 2. Якорь намагничивается, появляется электромагнитная сила F Э , притягивающая якорь к полюсу электромагнита. Если сила F Э преодолевает сопротивление пружины, то якорь приходит в движение и своим подвижным контактом 3 замыкает неподвижные контакты реле 4. При прекращении или уменьшении тока I р до значения, при котором сила F Э становится меньше силы F П сопротивления пружины 5, якорь возвращается в начальное положение, размыкая контакты 4.

Начальное и конечное положения якоря ограничиваются упорами 6.

Силы и момент, действующие на подвижную систему реле. Как известно [10], электромагнитная сила F Э , притягивающая стальной якорь к электромагниту и вызывающая движение якоря, пропорциональна квадрату магнитного потока Ф в воздушном зазоре:

Магнитный поток Ф и создающий его ток IP связаны соотношением

где RM – магнитное сопротивление пути 1 , по которому замыкается магнитный поток Ф; wP – количество витков обмотки реле.

Магнитное сопротивление магнитопровода электромагнита RM состоит из сопротивления его стальной части RC и воздушного зазора δ R В.З :

Подставив (2.2) в (2.1), получим

У реле с поворотным якорем и с поперечным движением якоря (рис.2.2, б, в) электромагнитная сила F Э образует вращающий момент

где d — плечо силы F Э .

Из (2.3) и (2.4) следует, что сила притяжения F Э и ее момент Мэ пропорциональны квадрату тока I 2 Р в обмотке реле и имеют, следовательно, постоянное направление, не зависящее от направления (знака) этого тока. Поэтому электромагнитный принцип пригоден для выполнения реле как постоянного, так и переменного тока и широко используется для изготовления измерительных реле тока, напряжения и вспомогательных реле логической части: промежуточных, сигнальных и реле времени.

При перемещении якоря электромагнитного реле в сторону срабатывания уменьшаются воздушный зазор δ (рис.2.2) и соответственно RM . При постоянстве тока в реле уменьшение RM вызывает увеличение магнитного потока Ф (2.3), что обусловливает возрастание F э и Мэ (2.4).

У реле с поперечным движением якоря и с втягивающимся якорем поле в воздушном зазоре нельзя считать однородным. Для этих конструкций зависимости RM = ¦ (δ), F э = ¦ (δ) и Мэ = = ¦ (α) имеют сложный характер (рис.2.2, а, б). Силу F э и момент Мэ можно выразить через производную магнитной проводимости воздушного зазора [10] уравнением

где GB — магнитная проводимость воздушного зазора, равная 1/ R В.З .

Сила (момент), противодействующая движению подвижной системы реле, создается пружиной ( F п и Мп), трением и тяжестью подвижной системы ( FT и МТ). При движении якоря на замыкание контактов F п и Мп увеличиваются с уменьшением δ по линейному закону: Мп = ka . (рис.2.3, а); сила трения FT остается неизменной.

Токи срабатывания и возврата реле, коэффициент возврата . Ток срабатывания. Реле начинает действовать, когда

Мэ = Мэ.с.р = Мп + Мт. (2.6)

Наименьший ток, при котором реле срабатывает, называется током срабатывания I ср.

В реле, выполняющих функции ИО, предусматривается возможность регулирования I ср изменением числа витков обмотки реле (ступенями) и момента, противодействующей пружины МП (плавно).

Читайте также:  Калькулятор перевода силы тока в мощность

Ток возврата. Возврат притянутого якоря в исходное положение происходит при уменьшении тока в обмотке реле под действием пружины 5 (см. рис.2.2), когда момент МП преодолевает электромагнитный момент МЭ.ВОЗ и момент трения МТ. Как следует из рис.2.4, это произойдет при соблюдении условия

где МЭ2 — момент, при котором начинается возврат реле.

Током возврата реле I ВОЗ называется наибольшее значение тока в реле, при котором якорь реле возвращается в исходное положение.

Коэффициент возврата. Отношение токов I ВОЗ / I ср называется коэффициентом возврата к B :

У реле, реагирующих на возрастание тока, I с.р > I ВОЗ и kB .

Из диаграммы (рис.2.4) следует, что чем больше избыточный момент ΔM и момент трения М T , тем больше разница между I ВОЗ и I с.р и тем меньше kB .

Особенности работы реле на переменном токе. При протекании по обмотке реле переменного тока согласно (2.3) мгновенное значение . Учитывая, что

где k = 1/2 k ’ .

Это выражение показывает, что электромагнитная сила (а следовательно, и МЭ t ) электромагнитного реле переменного тока содержит две составляющие: постоянную kI 2 m и переменную kI 2 m cos 2 w t , изменяющуюся с двойной частотой ( ¦ = 100 Гц) тока (рис.2.5). Электромагнитная сила F Э t ( M Э t ) имеет пульсирующий характер. В то же время противодействующая сила пружины F П имеет неизменное значение. В результате этого, при сработанном состоянии реле, якорь реле будет находиться под действием разности двух сил F Э t F П , меняющей свой знак.

В интервалы времени ab , cd , ef в течение каждого периода Т, когда F П > F Э (рис.2.5), якорь реле стремится отпасть и разомкнуть контакты реле, а в интервале b с , de , когда F Э > F П , якорь вновь притягивается к электромагниту, стремясь замкнуть контакты. Вибрация якоря вызывает вибрацию контактов, оказывая вредное влияние на работу реле.


Для устранения вибрации применяется расщепление магнитного потока Фр обмотки на две составляющие Ф I и Ф II , сдвинутые по фазе. Расщепление потока Фр достигается при помощи короткозамкнутого витка К (рис.2.6).

Короткозамкнутый виток К охватывает часть сечения магнитопровода. Под влиянием магнитного потока Ф I в витке К возникает ток I к , создающий поток Фк. На рис.2.6 показаны положительные направления магнитных потоков, а их векторная диаграмма приведена на рис.2.7.

В магнитопроводе реле циркулируют два результирующих магнитных потока: Ф I – выходящий из-под сечения магнитопровода, охваченного витком К; Ф II — выходящий из-под сечения S 2 , не охваченного витком:

Векторная диаграмма (рис.2.7) показывает, что магнитный поток Ф I сдвинут относительно Ф II на угол ψ.

Каждый из магнитных потоков (рис.2.8) Ф I = Ф Im sin w t и Ф II = Ф IIm sin ( w t +ψ) создает силы F Э I и F Э II , кривые изменения которых смещены по фазе так же, как и магнитные потоки. В результате этого при уменьшении одного из потоков второй нарастает, не позволяя электромагнитной силе понизиться до нуля.

Отключающая способность контактов зависит от значений тока, напряжения и индуктивности размыкаемой цепи. Она условно характеризуется мощностью SK , представляющей собой произведение номинального напряжения источника оперативного тока U О.Т и наибольшего допустимого тока I К.Д , размыкание которого не вызывает повреждение контактов: SK = U О.Т IK Д . Следует отметить, что для цепей переменного тока допустимый ток IK Д . всегда больше, чем для цепи постоянного тока. Это объясняется тем, что при прохождении переменного тока через нулевое значение электрическая дуга гаснет, а возможность ее повторного зажигания уменьшается благодаря увеличению зазора между размыкающимися контактами и снижению значения EL . Для облегчения работы контактов можно применять шунтирование обмотки аппарата, находящегося в управляемой цепи, искрогасительным контуром RC или цепью из R и диода VD (рис.2.9). В этом случае большая часть тока, вызываемого ЭДС EL , замыкается по шунтирующему контуру, в котором и погашается (расходуется) основная часть энергии, накопленной в магнитном поле обмотки. В результате этого энергия, поддерживающая ток и электрическую дугу между контактами реле, уменьшается, что существенно облегчает работу контактов. Наличие искрогасительного контура замедляет возврат реле. Этого недостатка лишена схема на рис.2.9, б. Здесь диодом VD шунтируется контакт реле KL , размыкающий индуктивную цепь. При такой схеме ток i , обусловленный EL , почти полностью замыкается, помимо размыкающихся контактов К, через контур и сопротивление источника U О.Т . В нормальных условиях, когда контакты реле разомкнуты, контур, шунтирующий контакты, разомкнут диодом VD .

Электрическая дуга между подвижным и неподвижным контактами возникает и при замыкании управляемой цепи. При замыкании подвижный контакт ударяется о неподвижный, что порождает вибрацию контактов, сопровождаемую многократным замыканием и размыканием управляемой цепи. При этом в момент разрыва появляется дуга, которая может вызвать оплавление и приваривание контактов при сильном их нагреве. Вибрация прекратится, когда кинетическая энергия подвижной системы реле израсходуется на преодоление сопротивления подвижных контактов и нагрев элементов замыкаемой цепи.

Для предупреждения порчи контактов электрической дугой неподвижные контакты выполняются в виде упругих пластин, колеблющихся вместе с подвижными контактами без разрыва управляемой цепи. Применяются также демпферы (механические успокоители), поглощающие кинетическую энергию подвижной системы. Контакты выполняются из тугоплавкого и менее подверженного окислению материала. Применяется серебро, металлокерамика и др.

Источник