Меню

Чему равен период синусоидального тока частотой f 50 гц



Переменный (синусоидальный) ток и основные характеризующие его величины.

ads

Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Синусоидальный ток

Рисунок 1

Формула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Источник

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Читайте также:  Как определить направление магнитного поля зная силу тока

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Источник

Период и частота переменного тока

Период и частота переменного тока

Под этим термином «переменный электрический ток» следовало бы понимать ток, изменяющийся во времени любым образом, соответственно введенному в математику понятию «переменная величина». Однако в электротехнику термин «переменный электрический ток» вошел в значении электрического тока, вменяющегося по направлению (в противовес электрическому току постоянного направления), а следовательно, и по величине, так как физически нельзя представлять себе изменения электрического тока по направлению без соответствующих изменений по величине.

Движение электронов в проводе сначала в одну сторону, а затем в другую называют одним колебанием переменного тока. За первым колебанием следует второе, затем третье и т. д. При колебаниях тока в проводе вокруг него происходит соответствующее колебание магнитного поля.

Время одного колебания называют периодом и обозначают буквой Т. Период выражают в секундах или в единицах, составляющих доли секунды. К ним относятся: тысячная доля секунды — миллисекунда (мс), равная 10 -3 с, миллионная доля секунды — микросекунда (мкс), равная 10 -6 с, и миллиардная доля секунды — наносекунда (нс), равная 10 -9 с.

Важной величиной, характеризующей переменный ток, является частота. Она представляет собой число колебаний или число периодов в секунду и обозначается буквой f или F. Единицей частоты служит герц, названный в честь немецкого ученого Г. Герца и обозначаемый сокращенно буквами Гц (или Hz). Если в одну секунду происходит одно полное колебание, то частота равна одному герцу. Когда в течение секунды совершается десять колебаний, то частота составляет 10 Гц. Частота и период являются обратными величинами:

При частоте 10 Гц период равен 0,1 с. А если период равен 0,01 с, то частота составляет 100 Гц.

Частота — важнейшая характеристика переменного тока. Электрические машины и аппараты переменного тока могут нормально работать только на той частоте, на которую они рассчитаны. Параллельная работа электрических генераторов и станций на общую сеть возможна только на одной и той же частоте. Поэтому во всех странах частота переменного тока, производимого электростанциями, стандартизуется законом.

В электрической сети переменного тока частота равна 50 Гц. Ток пятьдесят раз в секунду идет в одну сторону и пятьдесят раз в обратную. Сто раз в секунду он достигает амплитудного значения и сто раз становится равным нулю, т. е. сто раз меняет свое направление при переходе через нулевое значение. Лампы, включенные в сеть, сто раз в секунду притухают и столько же раз вспыхивают ярче, но глаз этого не замечает, благодаря зрительной инерции, т. е. способности сохранять полученные впечатления около 0,1 с.

Читайте также:  В чем измеряется вид тока

При расчетах с переменными токами пользуются также угловой частотой, она равна 2пиf или 6,28f. Ее следует выражать не в герцах, а в радианах в секунду.

Период и частота переменного тока

При принятой частоте промышленного тока 50 гц максимально возможное число оборотов генератора — 50 об/сек (р = 1). На такое число оборотов строятся турбогенераторы, т. е. генераторы, приводимые паровыми турбинами. Число оборотов гидротурбин и приводимых ими гидрогенераторов зависит от природных условий (прежде всего от напора) и колеблется в широких пределах, снижаясь иногда до 0,35 — 0,50 об/сек.

Число оборотов оказывает большое влияние на экономические показатели машины — габаритные размеры и вес. Гидрогенераторы с несколькими оборотами в секунду имеют наружный диаметр в 3 — 5 раз больший и вес во много раз больший, чем турбогенераторы той же мощности с n = 50 об/сек. В современных генераторах переменного тока вращается их магнитная система, а проводники, в которых индуктируется э.д.с, размещаются в неподвижной части машины.

Переменные токи принято разделять по частоте. Токи с частотой меньше 10000 Гц называют токами низкой частоты (токами НЧ). У этих токов частота соответствует частоте различных звуков человеческого голоса или музыкальных инструментов, и поэтому они иначе называются токами звуковой частоты (за исключением токов с частотой ниже 20 Гц, которые не соответствуют звуковым частотам). В радиотехнике токи НЧ имеют большое применение, особенно в радиотелефонной передаче.

Однако главную роль в радиосвязи выполняют переменные токи с частотой более 10000 Гц, называемые токами высокой частоты, или радиочастоты (токи ВЧ). Для измерения частоты этих токов применяют единицы: килогерц (кГц), равный тысяче герц, мегагерц (МГц), равный миллиону герц, и гигагерц (ГГц), равный миллиарду герц. Иначе килогерц, мегагерц и гигагерц обозначают kHz, MHz, GHz. Токи частотой в сотни мегагерц и выше называют токами сверхвысокой или ультравысокой частоты (СВЧ и УВЧ).

Радиостанции работают с помощью переменных токов ВЧ, имеющих частоту от сотен килогерц и выше. В современной радиотехнике для специальных целей применяются токи с частотой в миллиарды герц и имеются приборы, позволяющие точно измерять такие сверхвысокие частоты.

Источник

Период, частота, амплитуда и фаза переменного тока

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Период переменного тока

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

Читайте также:  Цепи однофазного переменного тока период

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Формула частота переменного токаФормула период переменного тока

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2pi.

Радиан

Рисунок 2. Радиан.

1рад = 360°/2pi

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2pi). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .

? = 6,28*f = 2fpi

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Фаза переменного тока

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Adblock
detector