Меню

Чем можно объяснить отталкивание проводников с током



Из работы А. Ампера «. Относительно действий электрических токов»

§ 1. О взаимодействии двух электрических токов

. Одна из проволок была неподвижной, а другая, подвешенная на остриях и снабженная для увеличения подвижности противовесом, могла приближаться и удаляться от первой, оставаясь ей параллельной. Я наблюдал тогда при одновременном пропускании тока через каждую из проволок, что они притягивались друг к другу, когда оба тока были одинаково направлены, и отталкивались друг от друга, когда направление токов было взаимно противоположным.

Но эти притяжения и отталкивания электрических токов существенно отличаются от тех, которые вызываются электричеством в состоянии покоя. Во-первых, они прекращаются, как и процесс химического разложения, в тот момент, когда размыкается проводящий контур. Во-вторых, при обычных электрических притяжениях и отталкиваниях разноименные электричества притягиваются, а одноименные отталкиваются. В случае же электрических токов, как раз наоборот, притяжение наблюдается, когда две проводящие проволоки расположены параллельно таким образом, что одноименные концы находятся с одной стороны и очень близко один возле другого, а отталкивание — когда в параллельных проводниках токи имеют взаимно противоположные направления, так что одноименные концы находятся на возможно большем расстояния один от другого. В-третьих, когда имеющееся притяжение достаточно сильно, чтобы привести в соприкосновение подвижный проводник с неподвижным проводником, они остаются притянутыми друг к другу, как два магнита, а не разделяются тотчас же, подобно двум соприкоснувшимся вследствие взаимного притяжения разноименно наэлектризованным — одно положительно, другое отрицательно — проводящим телам. Наконец, — и по-видимому это последнее обстоятельство зависит от той же причины, что и предыдущие,- два электрических тока притягиваются и отталкиваются в пустоте так же, как и в воздухе, что опять противоречит тому, что наблюдается при взаимодействии двух проводников, наэлектризованных обычным образом. Здесь не идет речь о том, чтобы объяснить эти новые явления.

Притяжения и отталкивания (двух параллельных токов, смотря по тому, как они направлены, одинаково или противоположно, являются фактами, полученными из эксперимента, который легко может быть повторен. Чтобы избежать во время этого опыта колебаний подвижного проводника, вызываемых легким движением воздуха, прибор необходимо поместить под стекло, пропустив через подставку участки проводника, ведущие к концам вольтова столба. Наиболее удобным является следующее расположение проводников: один из них закрепляется горизонтально на двух опорах, другой подвешивается при помощи двух металлических проволок, составляющих с ним одно целое, к стеклянной оси, расположенной выше первого проводника и опирающейся очень тонкими стальными остриями на две другие металлические опоры. К остриям припаяны упомянутые выше две металлические проволоки, так что электрическое соединение устанавливается через опоры при помощи этих остриев.

Оба проводника расположены, таким образом, взаимно параллельно, один возле другого и в одной горизонтальной плоскости. Один из них может совершать колебания вокруг горизонтальной линии, проходящей через концы стальных остриев, и в этом своем движении он остается параллельным неподвижному проводнику.

Над серединой стеклянной оси установлен противовес, который увеличивает подвижность колеблющейся части прибора, повысив ее центр тяжести. Сперва я думал, что электрический ток должен быть установлен в каждом из проводников с помощью отдельного вольтова столба, но это не обязательно. Достаточно, если оба проводника являются частями одного и того же контура, так как электрический ток существует в нем повсюду с одинаковой интенсивностью. Из этого наблюдения следует, что в рассматриваемых явлениях не играют никакой роли электрические напряжения концов столба, ибо в остальном контуре напряжение, конечно, отсутствует. Это подтверждается еще и тем, что на большом расстоянии от вольтова столба можно заставить отклоняться магнитную стрелку при помощи очень длинного проводника, середина коего огибает стрелку сверху и снизу в направлении магнитного меридиана. Этот опыт был мне указан знаменитым ученым, которому физико-математические науки особенно обязаны великим прогрессом, достигнутым в наши дни. Опыт удался полностью.

Обозначим через А и В концы неподвижного проводника, через С — конец подвижного проводника, близкий к А, и через D — конец того же проводника, близкий к В. Если один конец столба соединить с А, затем соединить В с С, a D присоединить к другому концу столба, то ясно, что электрический ток в обоих проводниках будет одного направления, и мы увидим, что проводники притягиваются. Если же, наоборот, В соединить с D, а С — с другим концом столба, токи в обоих проводниках будут взаимно-противоположного направления, и проводники будут отталкиваться.

Так как притяжения и отталкивания электрических токов происходят во всех точках контура, то понятно, что одним неподвижным проводником можно притягивать и отталкивать сколько угодно других проводников, и изменять направление скольких угодно магнитных стрелок. Я намерен устроить прибор с одним неподвижным и двумя подвижными проводниками, так чтобы либо оба проводника одновременно притягивались или отталкивались, либо один притягивался, а другой в то же время отталкивался в зависимости от способа соединения их друг с другом.

Ввиду успеха опыта, указанного мне маркизом де Лапласом, можно было бы, взяв столько проводников и магнитных стрелок, сколько имеется букв, и помещая каждую букву на отдельной стрелке, устроить своего рода телеграф с помощью одного вольтова столба, расположенного вдали от стрелок. Соединяя поочередно концы столба с концами соответствующих проводников, можно было бы лицу, которое наблюдало бы за буквами на стрелках, передавать сведения со всеми подробностями и через какие угодно препятствия. Если установить со стороны столба клавиатуру с буквами и производить соединения нажатием клавиш, то этот способ сообщения мог бы применяться достаточно просто и не требовал бы больше времени, чем необходимо для нажатия клавиш на одной стороне и чтения каждой буквы на другой*.

Вместо того, чтобы давать подвижному проводнику перемещаться параллельно неподвижному, можно дать ему возможность лишь вращаться в плоскости, параллельной неподвижному проводнику вокруг общего перпендикуляра, проходящего через середины обоих проводников. Тогда, как следует из установленного выше закона притяжения и отталкивания электрических токов, будет происходить одновременное притяжение или отталкивание каждой половины обоих проводников, в зависимости от того, будут ли токи направлены в одну сторону или взаимно противоположно. Подвижный проводник будет при этом поворачиваться до тех пор, пока не станет параллельным неподвижному, так что токи в обоих проводниках будут одинаково направлены.

* После редактирования настоящего труда я узнал от г. Араго, что подобный телеграф был уже предложен г Земмерингом, с той лишь разницей, что вместо отклонения магнитной стрелки, тогда еще неизвестного, автор предлагал наблюдать разложение воды в стольких сосудах, сколько имеется букв — Прим авт.

§ 3. О взаимодействии между электрическим проводником и магнитом

Это взаимодействие, открытое г. Эрстедом, привело меня к открытию взаимодействия двух электрических токов друг на друга, действия земного шара на ток и к установлению того, что все те свойства, какие мы обнаруживаем у магнитов, вызываются распределением электричества вдоль замкнутых кривых, перпендикулярных к оси каждого магнита. Это распределение подобно тому, какое имеет место в проводнике электрического тока.

Я начал свое рассуждение, когда хотел найти причины новых явлений, открытых г. Эрстедом, с того, что порядок, в котором были открыты два явления, не имеет никакого значения для вывода аналогий, наблюдаемых в этих явлениях. Мы могли бы предположить, что, прежде чем узнали о способности магнитной стрелки принимать постоянное направление с юга на север, было известно ее свойство быть приводимой электрическим током в положение, перпендикулярное к этому току, таким образом, что южный полюс стрелки относится влево от тока. Лишь затем будто бы открыли ее свойство постоянно поворачивать к северу тот из своих концов, который относился влево от тока. Для того, кто хотел бы дать объяснение постоянному направлению стрелки с юга на север, разве не показалась бы самой простой мысль, которая непосредственно должна у него возникнуть, что в земле существует электрический ток, направленный таким образом, что север находится налево от человека, который, лежа на поверхности и обратившись лицом к стрелке, имел бы этот ток в направлении от ног к голове, т. е. что в земле существует электрический ток с востока на запад, в направлении, перпендикулярном к магнитному меридиану.

Читайте также:  Рабочий ток компрессора холодильника

. Далее, если электрические токи являются причиной направляющего действия земли, то электрические токи будут также причиной направляющего действия одного магнита на другой. Следовательно, надлежит рассматривать магнит как собрание электрических токов, проходящих в плоскостях, перпендикулярных к его оси, и направленных таким образом, что южный полюс магнита, которым он обращается к северу, находится справа от этих токов. Я воспроизвел это расположение, насколько это было возможно, при помощи электрического тока по согнутому в спираль проводнику; эта спираль была устроена из латунной проволоки и имела на концах два прямолинейных участка из той же проволоки, которые были заключены в стеклянные трубки*, чтобы не сообщаться между собой и чтобы их можно было присоединить к двум концам столба.

В зависимости от направления, в котором пропускают ток через такую спираль, она действительно с силой притягивается или отталкивается полюсом магнита, который подносят к ней таким образом, чтобы направление его оси было перпендикулярно к плоскости спирали. Притяжение или отталкивание зависит от того, направлены ли электрические токи спирали и магнитного полюса одинаково или противоположно. Заменяя магнит второй спиралью, в которой ток направлен так же, как в магните, мы получаем такие же притяжения и отталкивания. Этим путем я открыл, что два электрических тока притягиваются, когда они одинаково направлены, и отталкиваются в обратном случае.

* Впоследствии я изменил это расположение… — Прим. авт.

Источник

Чем можно объяснить взаимодействие отталкивания двух параллельных проводников, по которым протекают постоянные электрические токи в противоположных направлениях ?

Физика | 10 — 11 классы

Чем можно объяснить взаимодействие отталкивания двух параллельных проводников, по которым протекают постоянные электрические токи в противоположных направлениях ?

А) Электростатическим взаимодействием электрических зарядов, создающих электрический ток в проводниках.

Б) Действием магнитного поля одного электрического тока на второй электрический ток.

В) Взаимодействием магнитных полей двух электрических токов.

Г) Непосредственны взаимодействием двух электрических токов .

Д) Действием электромагнитных воли, излучаемых одним электрическим током, на второй электрический ток.

Б) Действием магнитного поля одного электрического тока на второй электрический ток.

Каждый проводник создает М П а уже потом магнитное поле действует на проводник с током ( на заряды).

Как взаимодействют два паралельных проводника если электрический ток в них протекает в противоположном направлении?

Как взаимодействют два паралельных проводника если электрический ток в них протекает в противоположном направлении?

Что такое электрический ток?

Что такое электрический ток?

Условия существования электрического тока направления электрического тока.

Что служит источником магнитного поля?

Что служит источником магнитного поля?

1) электрический заряд 2) электрический ток 3) металлический проводник.

1. Постоянный электрический ток?

1. Постоянный электрический ток.

Условия, необходимые для существования электрического тока.

Действия электрического тока.

2. Действие магнитного поля на проводник с током.

Какой опыт показывает, что на проводник с током в магнитном поле действует сила (сила Ампера)?

От чего зависит направление силы и её значение?

1)В чем проявляется магнитное действие электрического тока?

1)В чем проявляется магнитное действие электрического тока?

2) на какие частицы действует электрическое поле?

Электрический ток, источник электрического тока?

Электрический ток, источник электрического тока.

Вблизи проводника с током можно обнаружить : 1 — магнитное поле 2 — электрическое поле 3 — электрическое и магнитное поле 4 — гравитационное поле?

Вблизи проводника с током можно обнаружить : 1 — магнитное поле 2 — электрическое поле 3 — электрическое и магнитное поле 4 — гравитационное поле.

Как обосновать утверждение, если ток – это процесс взаимодействия между электрическим полем и проводником, в котором ток появляется (в том числе энергетического взаимодействия)?

Как обосновать утверждение, если ток – это процесс взаимодействия между электрическим полем и проводником, в котором ток появляется (в том числе энергетического взаимодействия)?

В основе работы электродвигателя лежит : 1)Действие магнитного поля на проводник , с электрическим током, 2)электростатическое взаимодействие зарядов, 3)явление самоиндукций4)действие электрического п?

В основе работы электродвигателя лежит : 1)Действие магнитного поля на проводник , с электрическим током, 2)электростатическое взаимодействие зарядов, 3)явление самоиндукций4)действие электрического поля на электрический заряд.

Может ли только статическое электрическое поле создавать электрический ток в замкнутом проводнике?

Может ли только статическое электрическое поле создавать электрический ток в замкнутом проводнике?

Перед вами страница с вопросом Чем можно объяснить взаимодействие отталкивания двух параллельных проводников, по которым протекают постоянные электрические токи в противоположных направлениях ?, который относится к категории Физика. Уровень сложности соответствует учебной программе для учащихся 10 — 11 классов. Здесь вы найдете не только правильный ответ, но и сможете ознакомиться с вариантами пользователей, а также обсудить тему и выбрать подходящую версию. Если среди найденных ответов не окажется варианта, полностью раскрывающего тему, воспользуйтесь «умным поиском», который откроет все похожие ответы, или создайте собственный вопрос, нажав кнопку в верхней части страницы.

A = 20 / 2 = 10м / с ^ 2 F = ma = 10•0, 5 = 5Н.

Источник

Реферат: Взаимодействие параллельных проводников с током

I. Знакомство с явлением ………………………………………………..5

1.1. Экспериментальная установка……………………………..5

1.2. Сила взаимодействия параллельных токов………………6

1.3.Магнитное поле вблизи двух параллельных проводников……………………………………………….…………….9

II. Количественная величина сил ……………………………………10

2.1 Количественный расчет силы, действующей на

ток в магнитном поле…………………………………………..10

III. Электрическое взаимодействие…………………………………13

3.1 Взаимодействие параллельных проводников……………13

Список использованой литературы…………………………………16

Актуальность:

Для более полного понимания темы электромагнетизм, необходимо детальнее рассмотреть раздел взаимодействия двух параллельных проводников с током. В данной работе рассматриваются особенности взаимодействия двух параллельных проводников с током. Объясняется их взаимное притягивание и отталкивание. Рассчитывается количественная составляющая сил ампера, для проведенного в ходе работы эксперимента. Описывается действие друг на друга магнитных полей существующих вокруг проводников с током, и наличие электрической составляющей взаимодействия, существованием которой часто пренебрегают.

Опытным путем рассмотреть существование сил которые участвуют во взаимодействии двух проводников с током и дать им количественную характеристику.

— Рассмотреть на опыте наличие сил ампера в проводниках, по которым проходит электрический ток.

— Описать взаимодействие магнитных полей вокруг проводников с током.

— Дать объяснение происходящим явлениям притяжения и отталкивания проводников.

— Сделать количественный расчет сил взаимодействия двух проводников.

Читайте также:  Не традиционные источники тока

— Теоретически рассмотреть наличие электрической составляющей взаимодействия двух проводников с током.

Предмет исследования:

Электромагнитные явления в проводниках.

Объект исследования:

Сила взаимодействия параллельных проводников с током.

Методы исследования:

Анализ литературы,наблюдение и экспериментальное исследование.

I. Знакомство с явлением

1.1 Знакомство с явлением

Для нашей демонстрации нам необходимо взять две очень тонкие полоски алюминевой фольги длиной около 40 см. Укрепив их в картонной коробке, как показано на рисунке 1. Полоски должны быть гибкими, ненатянутыми, должны находиться рядом, но не соприкасаться. Расстояние между ними должно быть всего 2 или 3 мм. Соеденив полоски с помощью тонких проводов, подсоеденим к ним батарейки, так чтобы в обеих полосках ток шел в противоположных направлениях. Такое соединение будет закорачивать батарейку и вызовет кратковременный ток » 5А[1] .

Чтобы батарейки не вышли из строя их нужно подключать на несколько секунд каждый раз.

Подсоеденим теперь одну из батарей противоположными знаками и пропустим ток в одном направлении.

При удачном подключении видимый эффект мал, но зато легко наблюдаем.

Обратим внимание на то, что этот эффект никак не связан с сообщениям заряда полоскам. Электростатически они остаются нейтральными.[2] Чтобы в этом убедиться, что с полосками ничего не происходит когда они действительно заряжаются до этого низкого напряжения, подсоеденим обе полоски к одному полюсу батарейки, или одну из них к одному полюсу, а другую ко второму. (Но не будем замыкать цепь во избежании появления токов в полосках.)


1.2 Сила взаимодействия параллельных токов

В ходе эксперимента мы наблюдали силу, которую нельзя обЪяснить в рамках электростатики. Когда в двух параллельных проводниках ток идет только в одном направлении, между ними существует сила притяжения. Когда токи идут в противоположных направлениях, провода отталкиваются друг от друга.

Фактическое значение этой силы действующей между параллельными токами, и ее зависимость от расстояния между проводами могут быть измерены с помощью простого устройства в виде весов.[3] В виду отсутствия таковых, примим на веру, результаты опытов которые показывают, что эта сила обратно пропорциональна расстоянию между осями проводов: F

Поскольку эта сила должна быть обусловлена каким – то влиянием, распространяющимся от одного провода к другому, то такая цилиндрическая геометрия создаст силу, зависящую обратно пропорционально первой степени расстояния. Вспомним, что электростатическое поле распространяется от заряженного провода тоже с зависимостью от расстояния вида 1/r.

Исходя из опытов видно также что сила взаимодействия между проводами зависит от произведения протекающих по ним токов. Из симметрии можно сделать вывод что если эта сила пропорциональна I1 , она должна быть пропорциональна и I2. То, что эта сила прямо пропорциональна каждому из токов, представляет собой просто экспериментальный факт[4] .

Добавляя коэффициент пропорциональности, можем теперь записать формулу для силы взаимодействия двух параллельных проводов: F

I1 I2 ; следовательно,

Коэффициент пропорциональности будет содержать связанный с ним множетель 2 p , не в саму константу.[5]

Взаимодействие между двумя парралельными проводами выражается в виде силы на еденицу длины. Чем длиннее провода тем больше сила:

Расстояние r между осями проводов F / l измеряется в метрах. Сила на 1 метр длины измеряется в ньютонах на метр, и токи I1 I2 – в амперах. В этом случае значение m в точности равно 4 p *10 -7 .

В школьном курсе физики первым дается определение кулону через ампер, не давая при этом определения амперу, и затем принимается на веру значение константы k , появляющейся в законе Кулона.

Только теперь возможно перейти ктому, чтобы рассмотреть определение ампера.

Когда полагается что m =4 p *10 -7 , уравнение для F / l определяет ампер. Константа m называется магнитной постоянной. Она аналогична константе e электрической постоянной. Однако в присвоении значений этим двум константам имеется операционное различие. Мы можем выбирать для какой-нибудь одной из них любое произвольное значение. Но затем вторая константа должна определяться на опыте, поскольку кулон и ампер связаны между собой. В (СИ) выбирается m и затем измеряетсяe .

Исходя теперь из выше описанной формулы значение ампера можно выразить словами: если взаимодействие на 1м длины двух длинных параллельных проводов, находящихся на расстоянии 1м друг от друга, равна 2*10 -7 Н, то ток в каждом проводе равен 1А.

В случае, когда взаимодействующие провода находятся перпендикулярно друг к другу, имеется лиш очень небольшая область влияния, где провода проходят близко друг к другу, и поэтому можно ожидать, что будет мала и сила взаимодействия между проводами. На самом деле эта сила равна нулю. Поскольку силу можно считать положительной, когда токи параллельны, и отрицательной, когда токи антипараллельны, вполне правдоподобно, что эта сила должна быть равна нулю, когда провода перпендикулярны, ибо это нулевое значение лежит посередине между положительными и отрицательными значениями.

1.3 Магнитное поле вблизи двух параллельных

проводников

Как уже было рассмотрено выше, между параллельными токами действует сила притяжения. Картина линий поля показана на рисунке 3 показывает, что вокруг двух параллельных токов поле усиливается, в то время как между проводами ослабляется. Если воспользоваться предложенной Фарадеем моделью, в которой линии поля рассматриваются как упругие нити, стремящиеся сократиться и в то же время отталкивающие друг друга, то мы придем к заключению, что линии магнитного поля пытаются стянуть два провода вместе в центральную область, где их поля взаимно уничтожаются.

На рисунке 4 видим противоположную ситуацию. Провода и здесь параллельны, но токи в них антипараллельны. Теперь поля между проводами складываются конструктивно, в то время как во внешних областях происходит частичная компенсация полей. Линии поля отталкивают друг друга и поэтому пытаются раздвинуть провода.

II. Количественная величина сил

2.1 Количественный расчет силы, действующей на ток в магнитном поле.

Эта формула представляет собой часть формулы для силы взаимо­действия двух проводов. Теперь ее мож­но записать в

Сила, действующая на направленный пер­пендикулярно к напряженности магнит­ного поля ток, равна

Если ток не перпендикулярен к ли­ниям магнитного поля, эта сила стано­вится меньше. В самом деле, сила обра­щается в нуль, когда ток параллелен полю. Качественно к этому заключению можно прийти с помощью правила пра­вой руки и нашей модели взаимодей­ствующих полей.

На рисунке 6 показаны линии поля, создаваемого током, который направлен параллельно внеш­нему полю.

Результирующее поле по какую-нибудь одну сторону от провода не сильнее, чем по другую, и поэтому мы не можем ожидать, что к проводу будет приложена какая-то сила.

Количественный способ описания та­кой геометрической зависимости со­стоит использовании векторного про­изведения. Действующая на ток сила представляет собой вектор, и он про­порционален произведению двух других векторов, I и В . Окончательная формула для силы, действующей на ток в маг­нитном поле, имеет вид:

Взаимное расположение этих векторов показано на рисунке 7. Сила F должна

быть перпендикулярна как напряженно­сти магнитного поля В, так и проводу I. Направление силы может быть найдено или с помощью правила правого винта для векторного произведения, или обра­щением к модели линий магнитного по­ля. Модуль силы равен F=ILBsinj где j — угол между линиями поля и прово­дом. Когда угол j = 90°, сила макси­мальна и имеет направление, которое считается положительным в соответ­ствии с правилом правой руки. Когда j=0, действующая на провод сила рав­на нулю. Когда j =270°, ток в проводе имеет противоположное по сравнению с первым случаем направление; сила максимальна, но теперь имеет направле­ние, принимаемое за отрицательное.

Читайте также:  Гальванический ток по щербаку

Рассчитаем теперь, какие значения полей и сил создавались в опыте с дву­мя параллельными полосками алюми­ниевой фольги.

Примем, что замкнутая батарейка, (в начальный момент времени по показаниям мультиметра обеспечивала ток 5 А) и что алюминиевые полоски имели дли­ну 40 см при расстоянии между

ними всего 2 мм. Напряженность магнитного поля, создаваемого одной полоской на таком расстоянии от другой, равна

Сила, действующая на второй провод в таком. магнитном поле, равна:

F=ILBsin j = 5A*0,4м*5*10 -4 Тл*sin90°=10*10 -4 H.

Эта сила очень мала (масса 1г имеет вес только 1*10 -2 Н. Чтобы обнаружить столь малую силу, были выбраны легкие и гибкие полоски из алюминиевой фольги.


III. Электрическое взаимодействие

3.1 Взаимодействие параллельных проводников

В выше описанных примерах при рассмотрении был затронут вопрос о наличии на проводах избыточных поверхностных зарядов. При рассмотрении подобных ситуаций наличие этих зарядов игнорируется хотя они присутствуют на каждом из проводов, протекает по ним ток или нет.

Из этого следует что кроме магнитной силы Fм необходимо учитывать и электрическую F э .

Пусть дано два длинных провода с пренебрежительно малым сопротивлением R , а с другого конца подключены к источнику постоянного напряжения. Радиус сечения каждого провода в h =20 раз меньше расстояния между осями проводов. При каком значении сопротивления R результирующая сила взаимодействия проводов обратится в нуль?

Пусть на единицу длины провода приходится избыточный заряд l . Тогда электрическая сила, действующая на единицу длины провода со стороны другого провода, может быть найдена с помощью теоремы Гаусса:

Где L – расстояние между осями проводов. Магнитную силу, действующую на единицу длины провода можно найти с помощью теоремы о циркуляции вектора В:

Где I — сила тока в проводнике.

Дальше следует отметить, что обе силы – электрическая и магнитная – направлены в разные стороны.

Найдем соотношение этих сил:

Где U=IR . поэтому из соотношения (2) следует, что

Результирующая сила взаимодействия обращается в нуль, когда последнее отношение равно единице. Это будет при R=R

Если R F э – провода отталкиваются, если R>R ,то F м -2 и 10 -3 Тл. Поэтому при том же токе в 5 А в алюминиевой полоске сила была бы от 20 до 200 раз больше, чем рассчитанная сила взаимодействия параллельных полосок.

Список использованной литературы

1. Суорц Кл. Э. Необыкновенная физика обыкновенных явлений. Т. 2.- М.:Наука Гл. редакция физико — математической литературы, 1987.-384 с., ил.

2. И. Е. Иродов Основные законы Электромагнетизма. – М.:Высш. Шк., 1983.-279 с.

3. Тарасов Л. В. Современная физика в средней школе. М.: Просвещение, 1990.

4. Храмов Ю. А. Физики. Биографический справочник. 2 — е изд. М.: Наука, Гл. редакция физико — математической литературы, 1983.

5. Дягилев Ф. М. Из истории физики и жизни ее творцов: Кн. для учащихся. М.: Просвещение, 1986.

6. Карцев В. Л. Приключения великих уравнений. 3 — е изд. М.: Знание, 1986.

7. Энциклопедический словарь юного физика. 2 — е изд. М.: Педагогика, 1991.

8. Самарин М. С. Вольт, ампер, ом и другие. Единицы физических величин в технике связи. М.: Радио и связь, 1988.7. Шарле Д. Л. По всему земному шару: Прошлое, настоящее и будущее кабелей связи. М.: Радио и связь, 1985.

9. Дягилев Ф. М. Из истории физиков и жизни её творцов. М.: Просвещение. 1986, с 79.

[1] В демонстрации использовалась батарейка типа «крона» 6F22 9V.

[2] Явление существования избыточных поверхностных зарядов будет описано ниже

[3] Токовые весы учебной лаборатории.

[4] Ниже будет рассмотрен способ объяснения этого факта.

[5] Кратные p множетели обусловлены геометрическими свойствами пространства или свойствами источников.

[6] И.Е.Иродов Основные законы электромагнитизма.

Источник

68. Взаимодействие проводников с током

Если близко один к другому расположены проводники с токами одного направления, то магнитные линии этих проводников, охватывающие оба проводника, обладая свойством продольного натяжения и стремясь сократиться, будут заставлять проводники притягиваться (фиг. 100, а).

Магнитные линии двух проводников с токами разных направлений в пространстве между проводниками направлены в одну сторону. Магнитные линии, имеющие одинаковое направление, обладают свойством бокового распора. Поэтому проводники с токами противоположного направления отталкиваются один от другого (фиг. 100, б).

Рассмотрим взаимодействие двух параллельных проводов с токами, расположенными на расстоянии а один от другого. Пусть длина проводов равна /.

Магнитная индукция, созданная током l1 на линии расположения второго Проводника, равна:

Магнитная индукция, созданная током /2 на линии расположения первого проводника, будет равна:

3 Апрель, 2009 53656 ]]> Печать ]]>

  • 1
  • 2
  • 3
  • 4
  • 5

2 / 7 ( Хорошо )

Похожие:

Похожие:

Последние комментарии : 1

Материал, § 35, физика 8 класс учебник — Александр Васильевич Перышкин.

Мы не можем видеть движущиеся в электрическом проводнике электроны. О наличии электрического тока в цепи мы можем судить лишь по различным явлениям, которые вызывает электрический ток. Такие явления называют действиями тока. Некоторые из этих действий легко наблюдать на опыте. Тепловое действие тока можно наблюдать, например, присоединив к полюсам источника тока железную или никелиновую проволоку (рис. 54). Проволока при этом нагревается и, удлинившись, слегка провисает. Её даже можно раскалить докрасна. В электрических лампах, например, тонкая вольфрамовая проволочка нагревается током до яркого свечения. Химическое действие тока состоит в том, что в некоторых ратворах кислот (солей, щелочей) при прохождении через них электрического тока наблюдается выделение веществ. Вещества, содержащиеся в растворе, откладываются на электродах, опущенных в этот раствор. Например, при пропускании тока через раствор медного корпуса (CuSO4) на отрицательно заряженном электроде выделится чистая медь (Cu). Это используют для получения чистых металлов (рис. 55). Магнитное действие тока также можно наблюдать на опыте. Для этого медный провод, покрытый изоляционным материалом, нужно намотать на железный гвоздь, а концы провода соединить с источником тока (рис. 56). Когда цепь замкнута, гвоздь становится магнитом (намагничивается) и притягивает небольшие железные предметы: гвоздики, железные стружки, металлические опилки. С исчезновением тока в обмотке (при размыкании цепи) гвоздь размагничивается. Рассмотрим теперь взаимодействие между проводником с током и магнитом. На рисунке 57 изображена висящая на нитях небольшая рамочка, на которую навито несколько витков тонкой медной проволоки. Концы обмотки присоединены к полюсам источника тока. Следовательно, в обмотке существует электрический ток, но рамка висит неподвижно. Если эту рамку поместить теперь между полюсами магнита, то она станет поворачиваться (рис. 58). Явление взаимодействия катушки с током и магнита используют в устройстве прибора, называемого гальванометром. На рисунке 59, а показан внешний вид школьного гальванометра, а на рисунке 59, б — его условное изображение на схемах. Стрелка гальванометра связана с подвижной катушкой, находящейся в магнитном поле. Когда в катушке существует ток, стрелка отклоняется. Таким образом, с помощью гальванометра можно судить о наличии тока в цепи. Следует заметить, что из всех рассмотренных нами действий электрического тока магнитное действие тока наблюдается всегда, какой бы проводник тока ни был — твёрдый, жидкий или газообразный.

Источник