Меню

Аварийный режим работы в трехфазной цепи переменного тока при соединении звездой



Режимы работы трехфазной цепи

Различают симметричный, несимметричный и аварийный режимы работы трехфазной цепи.

Трехфазная цепь являетсятся симметричной, если в ней комплексные сопротивления всех трех фаз одинаковы, т.е. если . В противном случае они являются несимметричными. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например, трехфазный приемник, соединенный звездой, на рис. 2.18, а является симметричным, а на рис. 2.18, б – нет, даже при условии: R = ZL = ZC.

Если к симметричной трехфазной нагрузке приложена симметричная трехфазная система напряжений генератора (2.35), то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным. В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол 2π/3. Если в трехфазной системе при симметричной трехфазной системе напряжений генератора нагрузка несимметричная, то будет иметь место несимметричный режим работы трехфазной цепи.

а) б)
Рис. 2.18 – Примеры нагрузки

При расчете трехфазной цепи в симметричном режиме работы ее расчет осуществляется сначала для одной фазы (Рис 2.14) например фазы А, по результатам которого определяются соответствующие величины, токи и напряжения, в других фазах. Эти напряжения и токи по величине будут равны. Углы сдвига фаз также будут одинаковыми. Ток нейтрали I будет равен нулю и напряжение между точками Nn (Unнапряжение смещения нейтрали) также будет нулевым.

При несимметричном режиме эти расчеты необходимо производить для каждой фазы отдельно. В этом режиме за счет неравенства токов (их модулей и аргументов) появится ток I ≠ 0.

Для соединения трехфазной цепи в звезду возможны следующие аварийные режимы работы:

1) обрыв одной из фаз;

2) обрыв нулевого провода;

3) обрыв фазы и нуля;

4) короткое замыкание фазы при обрыве нулевого провода.

При обрыве одной фазы, работа нагрузкой этой фазы не совершается, и остальные нагрузки свои режимы работы не изменят. При этом нулевой провод буде нагружен дополнительно.

Если нагрузки связаны и являются одним целым, то этот режим будет аварийным. Например, если нагрузка – асинхронный двигатель, то он будет в аварийном режиме и нулевой провод будет нагружен.

Обрыв нулевого провода не всегда вызывает аварию в трехфазных цепях. Если нагрузка симметрична, то обрыв нулевого провода не изменит токов нагрузок, так как для симметричной нагрузки I = 0. Для несимметричных нагрузок I ≠ 0, и поэтому такой режим может вызвать аварию.

Обрыв фазы и нулевого провода приводит к I = 0 и к исчезновению одного фазного напряжения. Потребители оставшихся фаз оказываются включенными последовательно. Токи в этих фазах будут одинаковыми, а напряжения на них будут зависеть от сопротивлений нагрузок.

При коротком замыкании одной из фаз и обрыве нулевого провода напряжение этой фазы станет равно нулю. Нагрузка по току оставшихся фаз увеличится в раз по отношению к исходному значению.

Источник

3.5. Несимметричные и аварийные режимы работы трехфазных цепей

Для соединения трехфазной цепи в звезду возможны следующие аварийные режимы работы:

1) обрыв фазы (рис. 3.10);

2) обрыв нулевого провода (рис. 3.11);

3) короткое замыкание фазы при обрыве нуля (рис. 3.12).

4) обрыв фазы и нуля, рис. 3.12.

Для соединения трехфазной цепи в треугольник возможны следующие аварийные режимы:

2) обрыв линейного провода.

Аварийные режимы в нагрузках соединенных звездой

1) При обрыве фазы А , работа нагрузкой не совершается, а остальные нагрузки ( ) свои режимы работы не изменят (рис. 3.13): .

Если нагрузки связаны и является одним целым, то этот режим будет аварийным. Так, если эта нагрузка – асинхронный двигатель, то он будет в аварийном режиме и нулевой провод будет нагружен дополнительно (рис. 3.13):

2) Обрыв нулевого провода не всегда вызывает аварию в трехфазных цепях. Если нагрузка симметрична, то обрыв нулевого провода не изменит токов нагрузок, так как для симметричной нагрузки

Для несимметричных нагрузок , и поэтому такой режим может вызвать аварию.

Для того чтобы показать это, используем метод двух узлов:

Напряжение (рис. 3.14) не равно нулю, если нагрузки несимметричны. Фазные токи также будут неодинаковыми.

3) При коротком замыкании фазы А и обрыве нуля напряжение этой фазы равно нулю: , (рис. 3.15).

Нагрузка фазы В увеличится в раз:

Аналогично и в фазе С:

будет увеличен по отношению к исходному в раз.

4) Обрыв фазы и нулевого провода дает:

В оставшихся фазах токи будут одинаковыми, а напряжения на них будут зависеть от сопротивлений нагрузок (рис. 3.16).

Аварийные режимы в нагрузках соединенных треугольником

1) Обрыв фазы.

Ключ к1 замкнут, ключ к2 разомкнут (рис. 3.17). В этом режиме ток в фазе отсутствует, а остальные нагрузки работают как обычно (рис. 3.18). В таком аварийном режиме линейные токи фаз А и В соответствуют фазным токам, а линейный ток фазы С остается таким, каким был прежде.

Обрыв линейного провода. Ключ к1 разомкнут и ключ к2 замкнут (рис. 3.19). Фаза нагрузки с своего режима не изменит, а фазы становятся последовательно соединенными и параллельно подключеннымик линейному напряжению фаз В, С (см. рис. 3.17), то есть цепь становитсяоднофазной. Топографическая и векторная диаграммы в этом случае могут иметьвид, как показано на рис.3.19.

Источник

Трехфазная нагрузка, соединенная по схеме «звезда»

Трехфазная нагрузка, соединенная по схеме «звезда»

Если нагрузки (приемники) соединены в трехфазную цепь по схеме «звезда» (рис.1), то к сопротивлениям нагрузки приложены фазные напряжения. Линейные токи равны фазным и определяются по закону Ома:

Читайте также:  Сила света через ток

а ток в нейтрали равен векторной сумме этих токов: IN = IA + IB + IC.

При симметричных напряжениях UA, UB, UC и одинаковых сопротивлениях RA= RB = RC = R токи IA, IB, IC также симметричны и их векторная сумма (IN) равна нулю. Тогда

IЛ = = ¤ R; IN = 0.

Если же сопротивления фаз нагрузки неодинаковы, то через нулевой провод протекает некоторый ток IN ¹ 0. Это поясняется на векторных диаграммах (рис.2).

Мощность трёхфазной нагрузки складывается из мощностей фаз: SP = PА + PВ + PС.

Когда нагрузка симметричная и чисто резистивная, имеем

SP = 3 = 3 × .

При смешанной (активно-индуктивной или активно-емкостной) нагрузке:

SP = 3 × × × cosj = Ö3 × × × cosj.

SQ = 3 × × × sinj = Ö3 × × × sinj.

SS = 3 × IФ = Ö3 × × .

Аварийные режимы трёхфазной цепи при соединении нагрузки в звезду

Аварийными являются режимы, возникают при коротких замыканиях в нагрузке или в линиях и обрыве проводов. Остановимся на некоторых типичных аварийных режимах.

Обрыв нейтрального провода при несимметричной нагрузке

В симметричном режиме IN = 0, поэтому обрыв нейтрального провода не приводит к изменению токов и напряжений в цепи и такой режим не является аварийным. Однако, при несимметричной нагрузке IN ¹ 0, поэтому обрыв нейтрали приводит к изменению всех фазных токов и напряжений. На векторной диаграмме напряжений точка «0» нагрузки, совпадающая до этого с точкой «N» генератора, смещается таким образом, чтобы сумма фазных токов оказалась равной нулю (рис.3). Напряжения на отдельных фазах могут существенно превысить номинальное напряжение.

Обрыв фазы при симметричной нагрузке в схеме с нулевым проводом

При обрыве провода, например, в фазе А ток этой фазы становится равным нулю, напряжения и токи в фазах В и С не изменяются, а в нулевом проводе появляется ток

IN = IB + IC. Он равен току, который до обрыва протекал в фазе А (рис. 4).

Обрыв фазы при симметричной нагрузке в схеме без нулевого провода

При обрыве, например, фазы А сопротивления RA и RB оказываются соединёнными последовательно и к ним приложено линейное напряжение UBC. Напряжение на каждом из сопротивлений составляет от фазного напряжения в нормальном режиме. Нулевая точка нагрузки на векторной диаграмме напряжений смещается на линию ВС и при RB = RC находится точно в середине отрезка ВС (рис.5)

Короткое замыкание

При коротком замыкании фазы нагрузки в схеме с нулевым проводом ток в этой фазе становится очень большим (теоретически бесконечно большим) и это приводит к аварийному отключению нагрузки защитой. В схеме без нулевого провода при замыкании, например, фазы А, нулевая точка нагрузки смещается в точку «А» генератора. Тогда к сопротивлениям фаз В и С прикладываются линейные напряжения. Токи в этих фазах возрастают в раз, а ток в фазе А – в 3 раза (рис. 6).

Короткие замыкания между линейными проводами и в той и в другой схеме приводят к аварийному отключению нагрузки.

Лабораторная работа № 13

Трёхфазная нагрузка, соединённая по схеме «ЗВЕЗДА»

Цель работы:

Исследовать трёхфазную цепь, соединённую по схеме «ЗВЕЗДА», в различных

Для трёхфазной цепи с соединением «ЗВЕЗДА» при симметричной и несимметричной нагрузках измерьте с помощью мультиметра действующие значения фазных и линейных напряжений и ток в нейтральном проводе. Вычислите линейные токи и мощности фаз. Постройте в масштабе векторные диаграммы напряжений и токов.

1.Соберите цепь с симметричной нагрузкой (RA= RB= RC=1кОм) согласно схеме.

2.Измерьте действующие значения напряжений и тока в нейтральном проводе согласно табл. 1 и вычислите токи и мощности фаз.

3.Повторите измерения и вычисления для несимметричной нагрузки (RA=1 кОм,

RB=680 Ом, RC=330 Ом).

4.Постройте в масштабе векторные диаграммы напряжений и токов.

Источник

Цепи трехфазного переменного тока (соединение потребителей по схеме «звезда»)

Цель работы. Исследовать электрическую цепь трехфазного переменного тока, содержащую приемник электрической энергии, соединенный по схеме «звезда» с нулевым (нейтральным) проводом и без него.

Краткие теоретические сведения

Трехфазная симметричная система ЭДС состоит из трех ЭДС, одинаковых по амплитуде и частоте, но сдвинутых друг относительно друга на 120º.

При соединении «звездой» концы обмоток фаз генератора X, Y, Z соединяют в одну общую точку N , называемую нейтральной или нулевой. К началам фаз генератора А, В, С подключают провода, с помощью которых источник питания (генератор) соединяется с приемником. Эти провода называются линейными, а трехфазная система – трехпроводной (рис.20).

Рис.20. Трехпроводная система трехфазного переменного тока (соединение по схеме «звезда»).

Если нейтральная (нулевая) точка N генератора соединена проводом с нейтральной (нулевой) точкой n приемника, то система называется четырехпроводной с нулевым (нейтральным) проводом (рис.19).

Рис.21. Четырехпроводная система трехфазного переменного тока с нулевым (нейтральным) проводом (соединение по схеме «звезда»).

При соединении «звездой» каждая фаза генератора, линейный провод и фаза нагрузки соединены между собой последовательно и через них проходит один и тот же ток. Следовательно, при соединении «звездой» линейный ток равен фазному, т.е.

Напряжения между началом и концом каждой фазы нагрузки А, В, С, равные (при пренебрежении падением напряжения в проводах) напряжениям на фазах генератора, называются фазными напряжениями. Напряжения между линейными проводами AB, BC, CA называются линейными напряжениями. Токи, протекающие в фазах нагрузки A, B, C, называются фазными токами. Для системы «звезда» линейные токи одни и те же с фазными Л = Ф.

Читайте также:  Электролитический конденсатор в цепи пульсирующего тока

По второму закону Кирхгофа можно определить соотношения между фазными и линейными напряжениями

Так как трехфазная система генератора симметрична, то действующие значения ЭДС генератора равны между собой и равны действующим значениям на нагрузке при пренебрежении падением напряжения в линии A = B = C = A = B = C = Ф .

Исходя из равенства угла сдвига между фазами 120 на генераторе и нагрузке и выведенных из второго закона Кирхгофа уравнений (37), равны между собой и действующие значения линейных напряжений

Векторная диаграмма фазных и линейных напряжений (рис.20) будет для симметричного генератора и четырехпроводной системы «звезда» неизменна при любой нагрузке. На рис.20а приведена полярная, а на рис. 20б – топографичекая векторная диаграмма.

а) б)

Рис.22. Полярная и топографическая векторные диаграммы напряжений в четырехпроводной системе «звезда»

Из векторной диаграммы (рис.20а) получим соотношение между линейными и фазными напряжениями.

UAB = 2UА cos 30º = UА = UФ.

В общем случае для четырехпроводной системы «звезда» при любой нагрузке

К симметричному трехфазному генератору с нейтральным проводом может быть присоединена любая симметричная и несимметричная нагрузка. Нагрузка называется симметричной, если сопротивления и углы сдвига фаз между напряжением и током всех ее фаз одинаковы

Несоблюдение любого из условий (39) приведет к нарушению симметричности нагрузки трехфазной системы.

Рассмотрим четырехпроводную трехфазную систему с нагрузкой, соединенной по схеме «звезда».

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Так как UA = UB = UC = UФ = , то

Топографическая векторная диаграмма токов и напряжений при симметричной активной нагрузке представлена на рис.21.

Рис.23. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при симметричной активной нагрузке

По первому закону Кирхгофа

Для симметричной нагрузки

2) Несимметричная активная нагрузка: ZA = RA ; ZB = RB ; ZC = RC ; RARBRC ; IAIBIC

Топографическая векторная диаграмма токов и напряжений при несимметричной нагрузке представлена на рис.22

Рис.24. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Для нахождения значения тока IN по выражению (42) необходимо найти геометрическую сумму векторов A , B и C (рис.22). В результате получаем

Общая мощность трехфазной цепи в этом случае будет равна

Трехпроводная трехфазная система с соединением нагрузки по схеме «звезда» без нулевого (нейтрального) провода (рис.20).

Рассмотрим, что произойдет с токами и напряжениями при отключении нейтрального провода (рис.20).

В трехпроводной системе, соединенной по схеме «звезда» между нулевой точкой нагрузки и нулевой точкой генератора возникает напряжение UnN , величина и направление которого зависят от величины и характера нагрузки.

Согласно методу двух узлов в случае активной нагрузки напряжение UnN, можно выразить следующим образом

Составим уравнения по второму закону Кирхгофа

Токи в фазах нагрузки определяются

Проанализируем электрическое состояние трехпроводной трехфазной системы, соединенной по схеме «звезда», при различных значениях нагрузки.

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Векторная диаграмма токов и напряжений приведена на рис.25.

Рис.25. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при симметричной активной нагрузке

Векторная диаграмма аналогична диаграмме, построенной для четырехпроводной системы с симметричной активной нагрузкой. Подобным образом аналогична диаграмма для симметричной активно-реактивной нагрузки, поэтому при симметричной нагрузке отпадает необходимость нулевого провода, т.к. ток в нем равен нулю.

2) Несимметричная активная нагрузка: ZA = RA ; ZB = RB ; ZC = RC ; RARBRC ; IAIBIC

При отключении нейтрального провода ток I становится равным нулю, следовательно, при несимметричной нагрузке должны измениться и токи IA , IB , IC. изменение же этих токов может произойти только при условии, что изменились напряжения на фазах нагрузки. Следовательно, фазные напряжения нагрузки теперь не будут представлять симметричную систему векторов, т.к. действующие значения этих напряжений не будут равны между собой, а их фазовый сдвиг относительно друг друга будет отличаться от 120º (рис.26).

Рис.26. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Нулевая точка нагрузки n смещена относительно нулевой точки генератора N.

Из рис.25 видно, что напряжения на фазах нагрузки определяются как

что соответствует выражению (47)

Проведя геометрическое сложение векторов , , и разделив полученный результат на значение проводимости Y = , в соответствии с выражением (45), получаем вектор nN.

Вычитая полученный результат из векторов , , и , находим соответственно , и .

В результате получаем выражения для расчета действующих значений фазных напряжений UA, UВ, UС и токов IA, IВ, IС.

Для измерения мощности в работе используется метод двух ваттметров W1 и W2 (рис.27).

Рис.27. Схема измерения мощности методом двух ваттметров

Поясним принцип работы этого метода.

Приборы для измерения активной мощности (ваттметры), включенные в цепь однофазного переменного тока, измеряют величину

Р = UI ∙ cos (U ^ I) , (50)

где U — напряжение, приложенное к обмотке напряжения ваттметра;

I — ток, протекающий по токовой обмотке ваттметра;

U ^ I = φ — угол сдвига между напряжением и током.

Активная мощность трехфазной цепи при симметричной нагрузке фаз может быть выражена двумя равноценными формулами

Р = 3∙UФIФ ∙ cos φ или

Р = ∙UЛIФ ∙ cos φ . (51)

Для измерения активной мощности в трехпроводных цепях трехфазного тока как при симметричной, так и при несимметричной нагрузке фаз (независимо от способа соединения нагрузки «звездой» или «треугольником»), широкое практическое применение получил метод двух ваттметров, включенных как показано на рис.14.

Показания ваттметров W1 и W2 можно записать следующим образом

Обозначим через α и β соответственно углы (UAB ^ IA) и (UCB ^ IC) . Для определения α и β построим векторную диаграмму для случая симметричной активно-индуктивной нагрузки (рис.27). Согласно построению α = 30º + φ, β = 30º – φ.

Читайте также:  Радиационном поражении электрическим током

Учитывая, что при симметричной нагрузке UАВ = UСВ = UЛ и IА = IС = IЛ, показания ваттметров можно записать следующим образом:

Р = Р1 + Р2 = UЛIЛ ∙ [cos (30º + φ) + cos (30º – φ)] = UЛIЛ ∙ cos φ. (53)

Полученное выражение совпадает с выражением (45). Таким образом доказано, что сумма показаний двух ваттметров будет равна активной мощности трехфазной цепи.

Рис.28. Векторная диаграмма трехпроводной системы трехфазного переменного тока с симметричной активно-индуктивной нагрузкой

Разность показаний двух ваттметров, умноженная на , будет равна реактивной мощности цепи Q.

Q = ( Р1Р2) = UЛIЛ ∙ [cos (30º + φ) – cos (30º – φ)] = UЛIЛ ∙sin φ. (54)

Показания каждого из ваттметров в отдельности не имеют никакого физического смысла, за исключением случая симметричной и чисто активной нагрузки, при которой Р1 = Р2 и составляет половину измеряемой мощности трехфазной цепи.

ПЛАН РАБОТЫ

Задание 1. Определить электрические параметры четырехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» с нулевым (нейтральным) проводом.

1. Собрать электрическую схему (рис.29).

Рис.29. Схема лабораторной установки: А-х, В-y, C-z — трехфазный ламповый реостат, установленный на стенде; А1 — амперметр на ток 1–2 А; А2, А3, А — амперметры на ток 0,25–0,5–1 А; V – вольтметр на 75-150-300-600 В.

2. Установить симметричную нагрузку фаз, включив по пять ламп в каждой фазе, и измерить IA, IB, IC, IN, UA, UB, UC, UAB, UBC, UCA.

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и осуществить измерения электрических параметров, указанных в п.2.

4. Вычислить электрические параметры, указанные в табл.7.

5. занести результаты измерений и вычислений в табл.7.

Задание 2. Определить электрические параметры трехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» без нулевого (нейтрального) провода.

1. Собрать электрическую схему (рис.30).

Рис.30. Схема лабораторной установки: А-х, В-y, C-z — трехфазный ламповый реостат, установленный на стенде; А1 — амперметр на ток 1–2 А; А2, А3 — амперметры на ток 0,25–0,5–1 А; V – вольтметр на 75-150-300-600 В; W1 и W2 — ваттметры на напряжение 75−150−300−600 В и ток 1−2,5−5 А.

2. Установить симметричную нагрузку, включив по пять ламп в каждой фазе, и измерить линейные и фазные напряжения, фазные токи, активные мощности.

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и измерить электрические параметры, указанные в п.2.

4. Вычислить электрические параметры, указанные в табл.8.

5. Занести результаты измерений и вычислений в табл.8.

1. Схемы измерений (рис.29 и 30) с обозначениями используемых приборов.

2. Расчет электрических параметров.

3. Таблицы 7 и 8 с результатами измерений и вычислений.

4. Построенные в масштабе топографические векторные диаграммы (две к заданию 1 по данным п.1-2 табл.7 в соответствии с рис. 21 и 22 и две к заданию 2 по данным пп.1-2 табл.8 в соответствии с рис. 24 и 25.

Измеренные величины Вычисленные величины
IA IВ IС I UA UВ UС UAВ UВС UСА UЛ/ UФ РА РВ РС Р
А А А А В В В В В В В Вт Вт Вт Вт
0,6 0,6 0,6
0,6 0,45 0,35 0,21
Измеренные величины Вычисленные величины
IA IВ IС UA UВ UС UAВ UВС UСА Р1(W1) Р2(W2) UЛ/ UФ РА РВ РС Ррасч Р(W1+W2)
А А А В В В В В В Вт Вт В Вт Вт Вт Вт Вт
0,6 0,6 0,6
0,525 0,475 0,375

1. Как относятся друг с другом ЭДС, составляющие трехфазную систему?

2. Как соединяются обмотки генератора при соединении «звездой»?

3. Чем отличается схема четырехпроводной системы трехфазного тока от схемы трехпроводной системы?

4. Что соединяет нулевой (нейтральный) провод?

5. Что такое линейные и фазные токи и напряжения и каковы соотношения между ними при соединении звездой в векторной форме?

6. Как связаны линейные и фазные напряжения в четырехпроводной системе трехфазного тока?

7. Что такое симметричная и несимметричная нагрузка?

8. Чему равна геометрическая сумма токов в четырехпроводной трехфазной системе при симметричной нагрузке?

9. Чему равен ток в нулевом проводе при симметричной нагрузке?

10. отличаются ли токи и напряжения в четырехпроводной и трехпроводной системах трехфазного тока при одинаковой симметричной нагрузке?

11. При какой нагрузке необходимо включить в трехфазную систему нулевой провод и зачем?

12. Как определить ток в нулевом проводе четырехпроводной системы при несимметричной нагрузке, зная линейные токи?

13. При каких условиях будут равны напряжения на всех фазах нагрузки в трехпроводной трехфазной системе?

14. Каков характер нагрузки в осветительных сетях?

15. Какую систему трехфазного тока нужно использовать в осветительных сетях и почему?

16. какую мощность можно определить методом двух ваттметров?

17. Чему равна активная мощность цепи при применении метода двух ваттметров?

18. В каких системах трехфазного тока может быть применен метод двух ваттметров?

19. Можно ли определить полную мощность трехфазной системы, используя метод двух ваттметров?

20. Можно ли определить коэффициент мощности трехфазной системы, используя метод двух ваттметров?

Источник