Меню

Апериодическая составляющая ударного тока



Составляющие токов короткого замыкания при переходных процессах. Основные соотношения при трехфазном коротком замыкании

date image2015-05-26
views image15604

facebook icon vkontakte icon twitter icon odnoklasniki icon

Апериодическая составляющая тока короткого замыкания в электроустановке: Свободная составляющая тока короткого замыкания в электроустановке, изменяющаяся во времени без перемены знака.

Периодическая составляющая тока короткого замыкания рабочей частоты в электроустановке: Составляющая тока короткого замыкания в электроустановке, изменяющаяся по периодическому закону с рабочей частотой.

Для выбора и проверки электрооборудования по условию электродинамической стойкости необходимо знать наибольшее возможное мгновенное значение тока КЗ, которое называют ударным током и определяют по формуле:

где Iп0 — значение периодической слагающей тока КЗ в начальный момент; Куд — ударный коэффициент, зависящий от постоянной времени Та апериодической составляющей тока КЗ

где Хк и Rк — соответственно индуктивное и активное сопротивления цепи КЗ.

Зависимость ударного коэффициента Куд от постоянной времени Та определяется выражением

Рассмотрим возникновение тока КЗ в цепи переменного тока с синусоидальной ЭДС, от источника неограниченной мощности. Значения токов КЗ зависят от момента времени. В первые моменты ток имеет переходные значения, а затем, после затухания в цепи свободных токов и прекращения изменения напряжения возбудителей синхронных машин под действием АРВ, получает установившуюся величину, равную по закону Ома:

Для принятых условий допускается, что R = 0, тогда действующее значение тока КЗ:

Угол сдвига тока по фазе φк = π/2.

Примем, что мгновенное значение ЭДС изменяется по закону ; мгновенное значение тока КЗ: .

Если предположить, что КЗ произошло в момент прохождения ЭДС через «0» (что является наиболее опасным случаем), то при t = 0

На рисунке 8.6 приведены кривые изменения тока короткого замыкания в цепи, питающейся от системы неограниченной мощности.

Рисунок 8.6 – Кривые изменения тока при коротком замыкании в удаленных точках от системы неограниченной мощности

Итак, при возникновении КЗ, в цепи появляются токи, имеющие следующие названия: периодическая составляющая тока КЗ, определяется по закону Ома и изменяется по гармонической кривой в соответствии с синусоидальной ЭДС генератора с рабочей частотой; апериодическая составляющая – определяется характером затухания тока КЗ, зависящего от активного сопротивления цепи и обмоток статора генератора, изменяющаяся со временем без перемены знака. В цепи с напряжением выше 1000 В, где значение активного сопротивления мало, время затухания апериодической составляющей 0,15 – 0,2 с. Полный ударный ток КЗ получается от алгебраического сложения первых двух.

Пока амплитуда полного тока уменьшается из-за наличия апериодического тока, его называют переходным током КЗ. Когда изменение амплитуды прекратятся, ток называется установившимся.

Источник

Ударный ток короткого замыкания

Наибольшего значения полный ток КЗ достигает при наибольших значениях его составляющих. В § 4.3 было установлено, что начальное значение апериодического тока достигает максимума, когда ток предшествующего режима равен нулю (холостой ход), а в момент КЗ периодическая составляющая вынужденного тока проходит через свой максимум. Это условие принимается в качестве расчетного.

Максимальное мгновенное значение полного тока КЗ – iу – называют ударным током. Найдем условия, при которых ударный ток достигает своего наибольшего значения для случая, когда ток предшествующего режима был равен нулю, т. е. Im = 0. В этом случае уравнение для полного тока КЗ принимает вид:

и представляет собой функцию двух независимых переменных: времени t и фазы включения α. Максимум тока наступает при α = 0.

Для цепей с преобладающей индуктивностью φк 90°, поэтому условия возникновения наибольшей апериодической составляющей и условие, при котором достигается максимум мгновенного значения полного тока, очень близки друг другу. Поэтому в практических расчетах максимальное значение полного тока КЗ, которое называют ударным током КЗ iу, обычно находят при наибольшем значении апериодической составляющей, считая, что он наступает приблизительно через полпериода, что при f= 50 Гц составляет около 0,01 с с момента возникновения КЗ.

ia (O)

Рис. 4.6. К определению ударного тока КЗ

Таким образом, выражение для ударного тока КЗ можно записать в следующем виде:

который называют ударным коэффициентом и который показывает превышение ударного тока над амплитудой периодической составляющей. его величина находится в пределах , что соответствует предельным значениям Та, т. е. Та = 0 при Lк = 0 и Та= ∞ при Rк = 0.

Естественно, чем меньше Та, тем быстрее затухает апериодическая составляющая и тем, соответственно, меньше ударный коэффициент. Влияние этой составляющей сказывается лишь в начальной стадии переходного процесса; в сетях и установках высокого напряжения она практически исчезает спустя 0,1…0,3 с, а в установках низкого напряжения она практически совсем незаметна.

Трехфазное КЗ ранее было названо симметричным, но этот термин является строгим только к периодическим составляющим токов в фазах. Апериодические же составляющие токов и, следовательно, полные токи во всех фазах не могут быть одинаковыми.

Под действующим значением полного тока к.з. понимают среднеквадратичный ток к.з. за период, в центре которого расположен рассматриваемый момент времени. Значение этого тока определяют по выражению

Если в (3.14) значение выразить через его составляющие , и произвести соответствующие преобразования [1], то получим

где — действующее значение периодической слагающей тока к.з.;

действующее значение апериодической слагающей тока к.з. в момент времени . При этом согласно [1], можно записать

Наибольший практический интерес представляет действующее значение тока к.з. в течение первого периода к.з., то есть в том периоде времени, в котором расположен ударный ток к.з. В этом случае действующее значение тока к.з. принято обозначать .

Согласно формуле (3.15) можно записать

где (так как цепь к.з. подключена к источнику неограниченной мощности); .

Тогда или окончательно,

Имея в виду, что может изменяться от 1 до 2, получим, что по выражению (3.17) может находиться в пределах

Источник

Апериодическая составляющая ударного тока

Источник: Фрагмент книги (стр.176 – 179) Рожкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций. – М: Энергоатомиздат, 1987. – 648 с.

При КЗ в системе собственных нужд существенное влияние на характер процесса и значение тока оказывают группы электродвигателей, включенных вблизи места повреждения. Наиболее сильно это влияние проявляется в сетях 3 – 6 кВ собственных нужд крупных ТЭС и АЭС.

Для привода механизмов собственных нужд применяют в основном асинхронные электродвигатели с короткозамкнутым ротором. При близком КЗ напряжение на выводах двигателей оказывается меньше их ЭДС. Электродвигатели переходят в режим генератора, посылающего ток в место повреждения. Синхронные электродвигатели при их наличии также подпитывают место КЗ.

Составляющую тока КЗ от электродвигателей необходимо учитывать при проверке аппаратов и проводников распределительных устройств собственных нужд, а также при расчете уставок релейной защиты оборудования 3 – 6 кВ. Для указанных целей достаточно обычно знать начальное значение периодической составляющей, ударный ток, значения периодической и апериодической составляющих тока КЗ в момент т размыкания контактов выключателей.

Влияние тока подпитки от электродвигателей проявляется и учитывается в зависимости от места КЗ.

При КЗ в точке К1 (рис. 3.38) ток подпитки будет иметь определяющее значение при выборе оборудования лишь в том случае, если его действие будет превышать действие тока от внешних источников (генераторов энергосистемы). При КЗ в точке К2 или КЗ действует суммарный ток – от внешней сети и от электродвигателей. Начальное значение периодической составляющей тока КЗ от электродвигателя определяется по аналогии с синхронными генераторами по выражению

Рис. 3.38. Особенности КЗ в системе собственных нужд

Величины Е»ф и х»д не задаются в каталогах, однако в них указывается кратность пускового тока электродвигателя I*пуск, равная отношению пускового тока электродвигателя Iпуск к его номинальному току Iном. Прямое включение электродвигателя в сеть рассматривается в теории электрических машин как КЗ за сопротивлением х»д. На этом основании в практических расчетах принимают равной

Iп,0,д=Iпуск=I*пуск·Iном, (3.64)

В отличие от генераторов запас электромагнитной и кинетической энергии электродвигателей мал и периодическая составляющая тока КЗ, создаваемая ими, быстро затухает:

Iп,t,д=Iп,t,д·e -t/Tд , (3.65)

где Т’д — постоянная времени затухания тока КЗ (периодической составляющей) от электродвигателей.
Апериодическая составляющая тока КЗ от электродвигателя описывается обычным выражением

ia,t,д=2·Iп,0,д·e -t/Ta,д ,

Та,д — постоянная времени затухания апериодического тока для цепи электродвигателя.
Ударный ток от электродвигателя

iy,д=2·Iп,0,д·ky,д,

где ку,д — ударный коэффициент, определяемый обычным путем по известному Та,д.
В общем случае к секциям собственных нужд электростанций подключается большое количество электродвигателей разных типов и мощностей. При оценке результирующего влияния всех электродвигателей на ток КЗ в месте повреждения целесообразно все электродвигатели заменить одним эквивалентным. Как показывает опыт, такая замена возможна и не приводит к существенным погрешностям. Действующие нормативы [3.7] рекомендуют следующие значения параметров эквивалентного электродвигателя:

Коэффициент полезного действия nд 0,94
Коэффициент мощности cos фд 0,87
Постоянная времени периодической составляющей тока Т’д, с 0,07
Постоянная времени апериодической составляющей тока Та,д, с 0,04
Ударный коэффициент ку,д 1,65
Кратность пускового тока 5,6

С учетом изложенного расчет токов КЗ в системе собственных нужд электростанции целесообразно проводить в следующем порядке [3.7]:
1. Составить расчетную схему (см., например, рис. 3.38), принимая при этом во внимание лишь те электродвигатели, которые имеют с местом КЗ прямую электрическую связь.
2. Составить схему замещения для определения тока КЗ от внешних источников (энергосистемы) и обычным способом (см. § 3.3) рассчитать начальное значение периодической составляющей Iп,0,с. Считаем Iп,0,с незатухающим (удаленная точка).
3. Определить суммарную номинальную мощность всех электродвигателей собственных нужд, электрически связанных с местом КЗ, Рном и начальное значение периодической составляющей тока от электродвигателей:

где Iп,0,д, кА, Рном, МВт; Uном
4. Найти начальное значение периодической составляющей суммарного тока КЗ:

Iп,0=Iп,0,c+Iп,0,д, (3.67)

5. Вычислить периодическую составляющую тока КЗ к моменту t:

где при определении e-t/0,07 можно использовать кривые на рис. 3.25, подставляя вместо Та значение Т’д.
6. Определить апериодическую составляющую тока КЗ к моменту t:

где Та,с можно определить по кривым на рис. 3.39 в зависимости от мощности питающей обмотки трансформатора собственных нужд SH0M. В расчете также целесообразно использовать кривые на рис. 3.25.

Рис. 3.39. Кривые определения ударных коэффициентов и постоянных времени затухания апериодической составляющей тока КЗ для ветви схемы

7. Найти ударный ток КЗ:

где kу,с определяется по кривым на рис. 3.39; kу,д=1,65 (см. выше).
При расчете токов КЗ на секции, питаемой через резервный трансформатор, должны учитываться электродвигатели, присоединенные непосредственно к шинам данной секции и к другим секциям, связанным с расчетной через магистрали резервного питания (например, в режиме замены рабочего трансформатора одного блока с одновременным пуском или остановом другого блока).
Если точный состав электродвигателей собственных нужд неизвестен, то для приближенных оценок тока КЗ принимают при питании от рабочего трансформатора

а при питании от резервного трансформатора

где Sном,ТСН – номинальная мощность рабочего трансформатора собственных нужд; Sном,ПРТСН – номинальная мощность пускорезервного трансформатора собственных нужд. Если трансформаторы имеют расщепленную обмотку низшего напряжения, то мощности, полученные из предыдущих выражений, необходимо уменьшить в 2 раза, т.е. учитывать электродвигатели, подключенные к данной обмотке НН.

Источник

Ответы на экзаменационные вопросы № 1-30 дисциплины «Переходные процессы в электроэнергетических системах» (Причины возникновения переходных процессов. Распределение и трансформация токов и напряжений при несимметричных КЗ) , страница 3

где Та = постоянная времени цепи КЗ;

ударный коэффициент, характеризующий превышение ударного тока над амплитудой периодической составляющей КЗ. Его значение =

Изменение тока КЗ и его составляющих при наибольшем начальном значении апериодической составляющей тока.

Действующее значение полного тока КЗ в произвольный момент времени t переходного процесса определяют как среднеквадратичное значение тока за период Т, в середине которого находится рассматриваемый момент. Поскольку i(t) в общем случае сложна, то для упрощения подсчета действующего значения считают, что за рассматриваемый период амплитуда периодической и апериодической составляющих неизменны и каждая из них равна своему значению в данный момент времени I.

Наибольшее действующее значение полного тока КЗ IУ приходится на первый период переходного процесса. Оно определяется в предположении, что апериодическая составляющая в течение этого периода равна ее мгновенному значению в середине периода, т.е. через 0,01 с после возникновения КЗ, а периодическая составляющая своему начальному значению.

А4.10 Расчет начального и ударного тока КЗ. Влияния и учет нагрузки

Поскольку в момент внезапного нарушения нормального режима потокосцепление ротора остается неизменным, наведенная в статоре ЭДС в начале переходного процесса также не меняется. Как показано в гл.4, сверхпереходные, переходные ЭДС и индуктивные сопротивления определяются

Начальный ток КЗ рассчитывают в следующем порядке: задаются базисными условиями(Sб,Uб); составляется схема замещения, в которой все элементы расчетной схемы приводят к выбранным базисным условиям (при расчете в о.е.) или к одной ступени напряжения (при расчете в именованных единицах); полученную схему замещения путем соответствующих преобразований приводят к простейшему виду и определяют результирующую эквивалентную ЭДС Е.»жв (или Е»жв) и результирующее сопротивление относительно точки КЗ

Искомое начальное значение периодической составляющей тока КЗ равно

где -базисный ток той же ступени

Влияние и учет нагрузки. При установившемся режиме КЗ влияние нагрузки проявляется, с одной стороны, в том, что предварительно нагруженный генератор имеет большую ЭДС, чем генератор, работающий на х.х., и, с другой, в том, что, оставаясь присоединенной к сети, она может существенно изменить величины и распределения токов в схеме.

Из простейшей схемы рис. 5.12,а видно, что нагрузка шунтирует поврежденную ветвь и тем самым уменьшает внешнее сопротивление цепи статора. Это приводит к увеличению тока генератора, уменьшению его напряжения и соответственно уменьшению тока в месте КЗ. С увеличением удаленности КЗ влияние нагрузки сказывается сильнее. А нагрузка, присоединенная непосредственно к точке КЗ, в установившемся режиме не играет никакой роли.

Рис5-12.Влияние и учет нагрузки при трехфазном КЗ

Сопротивление нагрузки можно определить, положив хВННАГР и U=UНОМчто приводит к выражению

Как видно, величина хпагр определяется параметрами генератора, причем влияние коэффициента мощности нагрузки, сказывается в скрытом виде — через значение ЕQ. При средних значениях параметров типовых генераторов, работающих с полной нагрузке при соs=0,8, относительная величина сопротивления нагрузк после округления результатов подсчета составляе

1,2 Эта величина отнесена к полной мощности нагрузки ] среднему напряжению ступени, где присоединена данная нагрузка.ЭДС нагрузки в установившемся режиме трехфазного КЗ принимается равной нулю.

Наибольшее мгновенное значение полного тока КЗ называют ударным током . Он возникает при первом наибольшем значении апериодической составляющей, совпадающей по знаку с периодической составляющей тока КЗ. Этот момент наступает примерно через полпериода после появления КЗ (t=0, 0 1с). При этом условии ударный ток

где Та = постоянная времени цепи КЗ;

ударный коэффициент, характеризующий превышение ударного тока над амплитудой периодической составляющей КЗ. Его значение =

А4.11 Практические методы расчета токов трехфазного КЗ расчет ТКЗ по типовым кривым

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Читайте также:  Два параллельных проводника с током взаимодействуют с силой

Счетчики и показания © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.