Меню

Активный модуль трансформатора переменного тока



Трансформатор простыми словами

Мы привыкли к тому, что напряжение в розетке всегда 220 В. Возможно не все читатели подозревают, что прежде чем поступить к потребителю, выполнялись преобразования электрической энергии. Перед поступлением на провода ЛЭП, напряжение переменного тока увеличивали до десятков, а то и сотен киловольт, а на выходе – понижали, до привычных нам 220 В. Эти преобразования выполнили силовые трансформаторы. В данной статье я расскажу вам, что такое трансформатор простыми словами.

Потребность в преобразования переменного напряжения возникает практически на каждом шагу. Чаще всего мы испытываем необходимость в понижении напряжения, так как большинство узлов современных электронных устройств работает при низких напряжениях. Однако для некоторых цепей высоковольтных узлов требуются значительные напряжения, порядка нескольких тысяч вольт.

Промышленный трансформатор

Рис. 1. Промышленный трансформатор

Что такое трансформатор?

Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.

Немного исторических фактов

В основу действия трансформатора легло явление магнитной индукции, открытое М. Фарадеем в 1831 г. Физик, работая с постоянным электрическим током, заметил отклонение стрелки гальванометра, подключенного к одной из двух катушек, намотанных на сердечник. Причем гальванометр реагировал только в моменты коммутации первой катушки.

Поскольку опыты проводились от источника постоянного тока, Фарадей не смог объяснить открытое явление.

Прообраз трансформатора появился лишь в 1848 году. Его изобрел немецкий механик Г. Румкорф, называя устройство индукционной катушкой особой конструкции. Однако Румкорф не заметил трансформации выходных напряжений.Датой рождения первого трансформатора считается день выдачи патента П. Н. Яблочкову на изобретение устройства с разомкнутым сердечником. Это случилось 30.11.1876 года.

Типы аппаратов с замкнутыми сердечниками появились в 1884 году. Их создали англичане Джон и Эдуард Гопкнинсоны.

По большому счету, технический интерес у электромехаников к переменному току возник только благодаря изобретению трансформатора. Идеи российского электротехника М. О. Доливо-Добровольского и всемирно известного Николы Тесла победили в спорах о преимуществах переменных напряжений именно благодаря возможности трансформации тока.

С победой идей этих великих электротехников потребности в трансформаторах резко выросла, что привело к их усовершенствованию и созданию новых типов приборов.

Общее устройство и принцип работы

Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.

Устройство трансформатора

Рисунок 2. Устройство трансформатора

Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.

Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:

  • сталь;
  • пермаллой;
  • феррит.

В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.

В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.

Форма сердечника может быть Ш-образной или торроидальной.

Рисунок 3. Внешний вид трансформатора

Базовые принципы действия

Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W1 / W2, где символами W1 и W2 обозначено количество витков в катушках.

Виды магнитопроводов

Если k > 1, то трансформатор повышающий, а при 0 Виды магнитопроводов

Более широкий спектр охватывает классификация по назначению.

Силовые

Назначения силового трансформатора понятно из названия. Термин силовые применяется к семейству моделей, как правило, большой мощности, используемых для преобразования электрической энергии в сетях ЛЭП и в различных обслуживающих установках.

При трансформации сохраняются частоты переменного тока, поэтому возможно подключение силовых трансформаторов в группы для работы в высоковольтных трехфазных сетях.

Силовые аппараты могут соединяться в группы с различными схемами подключения обмоток: по принципу звездочки, треугольником или зигзагом. Схема звездочка оправдана, если в трехфазных сетях нагрузка симметрическая. В противном случае предпочтения отдают треугольнику. При таком способе подключения токи первичной обмотки подмагничивают по отдельности каждый стержневой магнитопровод.

Тогда однофазное сопротивление приблизится к расчетному, а перекос напряжений будет устранен.

Автотрансформаторы

Группа устройств, в которых первичная и вторичная обмотки за счет их прямого соединения между собой образуют электрическую связь, называется автотрансформаторами. Характерным признаком этой группы является несколько пар выводов, к которым можно подключить нагрузку.

Обмотки автотрансформаторов имеют не только магнитную, но и электрическую связь. Они нашли применение в соединениях заземленных сетей, работающих под напряжением, превышающим 110 кВ, но при низких коэффициентах трансформации – не более 3 – 4.

Можно первичную обмотку подключить последовательно в электрическую цепь с другими устройствами и получить гальваническую развязку. Такие приборы получили названия трансформаторов тока. Первичную цепь таких устройств контролируют путём изменения однофазной нагрузки, а вторичную катушку используют в цепях измерительных приборов или сигнализации. Второе название приборов – измерительные трансформаторы.

Особенностью работы измерительных трансформаторов является особый режим выходной обмотки. Она функционирует в критическом режиме короткого замыкания. При разрыве вторичной цепи возникает резкое повышение напряжения в ней, что может вызвать пробои или повреждение изоляции.

Трансформатор тока

Трансформатор тока

Напряжения

Типичное применение – изоляция логических цепей защиты измерительных приборов от высокого напряжения. Трансформатор напряжения – это понижающий прибор, преобразующий высокое напряжение в более низкое.

Импульсные

В работе современной электронике применяются высокочастотные сигналы, которые часто необходимо отделить от других сигналов.
Задача импульсных трансформаторов – преобразования импульсных сигналов с сохранением формы импульса.

Для высокочастотных импульсных аппаратов выдвигаются требования о максимальном сохранении формы импульса на выходе. Имеет значение именно форма, а не амплитуда и даже не знак.

Сварочные

В работе сварочного аппарата важен большой сварочный ток. При этом, сетевое напряжение понижают до безопасного уровня. Благодаря мощному электрическому току дуговой разряд сварочного аппарата плавит металл.

В сварочном трансформаторе имеется возможность ступенчатого регулирования величины тока во вторичных цепях способом изменения индуктивного сопротивления, либо путем секционирования одной из обмоток.

Фото устройства представлено на рисунке 6. Обратите внимание на наличие коммутирующего переключателя.

Трансформатор для сварочного полуавтомата на броневом магнитопроводе

Рис. 6. Трансформатор для сварочного полуавтомата на броневом магнитопроводе

В сварочных аппаратах применяют конструкции на основе однофазных трансформаторов, а также с применением трехфазных трансформаторов. Для сварки некоторых металлов, например, нержавейки, сварочный ток выпрямляют.

Разделительные

Устройства, в которых нет электрической связи между обмотками, называют резделительными трансформаторами. Силовые разделительные аппараты применяются для повышения безопасности электросетей. Другая область применения разделительных трансформаторов – обеспечение гальванической развязки между отдельными узлами электрических цепей.

Согласующие

Данные типы аппаратов применяют для согласования сопротивления каскадов электронных схем. Они обеспечивают минимальное искажение формы сигналов, создают гальванические развязки между узлами электронных устройств.

Пик-трансформаторы

Аппараты, преобразующие синусоидальные токи в импульсные напряжения. Полярность выходных напряжений меняется через каждых полпериода.

Читайте также:  Микроконтроллеры для датчиков тока

Воздушные и масляные

Силовые трансформаторы бывают сухими (с воздушным охлаждением) (см. рис. 7) и масляными (см. рис. 8).

Модели сухих силовых трансформаторов чаще всего используют для преобразований сетевых напряжений, в том числе и в схемах трехфазных сетей.

Сухой трехфазный трансформатор

Рисунок 7. Сухой трехфазный трансформатор

При подключении нагрузки происходит нагревание обмоток, что грозит разрушением электрической изоляции. Поэтому в сетях с напряжениями свыше 6 кВ работают приборы с масляным охлаждением. Специальное трансформаторное масло повышает надежность изоляции, что очень важно при больших выходных мощностях.

Строение промышленного трансформатора с масляным охлаждением

Рис. 8. Строение промышленного трансформатора с масляным охлаждением

Сдвоенный дроссель

Конструктивно такой аппарат является трансформатором с одинаковыми катушками. Катушки одинаковой мощности образуют встречный индуктивный фильтр. Эффективность аппарата выше, чем у дросселя (при одинаковых размерах).

Вращающиеся

Применяются для обмена сигналами с вращающимися барабанами. Конструктивно состоят из двух половинок магнитопровода с катушками. Эти части вращаются относительно друг друга. Обмен сигналами происходит при больших скоростях вращения.

Обозначение на схемах

Трансформаторы наглядно изображаются на электрических схемах. Символически изображаются обмотки, которые разделены магнитопроводом в виде жирной или тонкой линии (см. рис. 9).

Пример обозначения

Пример обозначения

На схемах трехфазных трансформаторов обмотки начинаются со стороны сердечника.

Области применения

Кроме преобразования напряжений в электрических сетях, трансформаторы часто применяются в блоках питания радиоэлектронных устройств. Преимущественно это автотрансформаторы, которые одновременно выдают несколько напряжений для различных узлов.

Сегодня все чаще используют бестрансформаторные блоки питания. Однако там где требуется питание мощным переменным током, без электромагнитных устройств не обойтись.

Источник

Схемы датчиков тока на основе трансформатора тока

В статье предложены варианты пассивных и активных (на ОУ широкого применения и на специализированной микросхеме)датчиков, собранных на основе трансформатора тока.

Нередко требуется измерять или контролировать ток, потребляемый от электрической сети различными нагрузками, например электроприборами.

Для этих целей широко применяют как пассивные резистивные датчики и датчики на основе трансформаторов тока, самодельных или выпускаемых серийно, так и различные активные датчики на основе специализированных микросхем с гальванической развязкой от сети и без неё.

Основное назначение такого датчика тока — преобразовать переменный ток в переменное или постоянное напряжение, пропорциональное этому току.

Когда на выходе необходимо получить постоянное напряжение, совместно с пассивными датчиками потребуется применение выпрямителей, усилителей ИТ. д., и такие датчики, конечно, более востребованы.

Далее речь пойдёт о датчиках с использованием трансформатора тока. Основа такого датчика — трансформатор, по первичной обмотке (один или несколько витков) которого протекает ток нагрузки, а во вторичной наводится напряжение, пропорциональное этому току. Основной параметр трансформатора — коэффициент трансформации тока, который показывает, во сколько раз ток во вторичной обмотке (на низкоомной нагрузке) меньше, чем в первичной.

Датчик можно сделать пассивным, применив для получения постоянного напряжения простейший однополупериодный выпрямитель, или активным, с использованием различных микросхем.

В статье рассмотрены три варианта датчиков: на основе диодного выпрямителя, на основе выпрямителя на ОУ и на основе специализированной микросхемы ZXCT1009 [1, 2].

Передаточные характеристики этих датчиков показаны на рис. 1 при условии, что первичная обмотка трансформатора тока — один виток провода, через который протекает синусоидальный ток. При увеличении числа витков первичной обмотки крутизна передаточной характеристики пропорционально увеличится.

Передаточные характеристики датчиков

Рис. 1. Передаточные характеристики датчиков.

Принципиальная схема

Схема датчика на основе диодного однополупериодного выпрямителя показана на рис. 2 Конденсатор С1 подавляет импульсные сетевые помехи, выпрямитель собран на конденсаторе С2 и диоде VD1.

На выходе интегрирующей цепи R1C3 формируется постоянное напряжение, пропорциональное среднему значению тока нагрузки.

Все детали установлены на печатной плате из фольгированного с одной стороны стеклотекстолита, чертёж которой показан на рис. 3.

Схема датчика на основе диодного однополупериодного выпрямителя

Рис. 2. Схема датчика на основе диодного однополупериодного выпрямителя.

Датчик налаживания не требует. Выпрямительный диод должен быть диодом Шоттки, но если чувствительность не нужна и датчик рассчитан на ток более 0,5 А, можно применить обычный выпрямительный или импульсный диод, например, серий 1N400x, 1N4148, КД522. Поскольку датчик пассивный, его чувствительность и крутизна передаточной характеристики относительно невелики (см. рис. 1).

Печатная плата для схемы датчика

Рис. 3. Печатная плата для схемы датчика.

Активный датчик тока

Чтобы повысить чувствительность, можно использовать активный датчик тока, например, применив ОУ. Схема такого варианта показана на рис. 4 На двух ОУ DA1.1 и DA1.2 собран двухполупериодный выпрямитель [3].

Схема активного датчика тока на LM358AM

Рис. 4. Схема активного датчика тока на LM358AM.

Принцип работы такого выпрямителя основан на использовании ОУ с однополярным питанием. При подаче на неинвертирующий вход ОУ он будет усиливать сигнал положительной полуволны переменного напряжения и ограничивать сигнал отрицательной полуволны.

На ОУ DA 1.1 собран неинвертирующий усилитель с малым коэффициентом усиления (около 2), а на ОУ DA1.2 — усилитель с коэффициентом усиления около 10.

Конденсатор С1 подавляет импульсные и высокочастотные помехи. резистор R1 обеспечивает номинальный коэффициент трансформации трансформатора тока Т1. Резистор R2 и диод VD1 ограничивают минусовое напряжение на неинвертирующем входе ОУ DA 1.1, исключая перегрузку входа ОУ по напряжению.

Положительную полуволну усиливает сначала ОУ DA1.1, затем — ОУ DA1.2, и усиленный в десять раз сигнал появляется на его выходе. Отрицательную полуволну инвертирует и усиливает ОУ DA1.2. поэтому на его выходе формируется полуволна плюсового напряжения. В результате обеспечиваются двухполупериодное выпрямление и одновременно усиление переменного напряжения.

Подборкой резисторов R3-R6 можно подобрать желаемый коэффициент передачи устройства К = R6/R4. при этом соотношение сопротивления резисторов R3 и R5 находят из равенства R5/R3 = (К-1)/(К+1).

Выходной сигнал ОУ DA 1.2 поступает на интегрирующую RC-цепь R7C3, и на конденсаторе C3 формируется постоянное напряжение, пропорциональное среднему значению тока нагрузки.

Печатная плата

Рис. 5. Печатная плата.

Расположение деталей на печатной плате

Рис. 6. Расположение деталей на печатной плате.

Внешний вид собранного датчика

Рис. 7. Внешний вид собранного датчика.

Все детали установлены на печатной плате из фольгированного с двух сторон стеклотекстолита, чертёж которой показан на рис. 5, а расположение элементов — на рис. 6.

Одна сторона платы (противоположная установке деталей) оставлена металлизированной, на ней лишь раззенкованы отверстия под крайние выводы разъёма ХР1.

В отверстия в левом нижнем и правом верхнем углах необходимо вставить и с обеих сторон платы пропаять отрезки лужёного провода. Плату можно изготовить из фольгированного с одной стороны стеклотекстолита.

В этом случае вышеупомянутые отверстия в углах платы соединяют отрезком провода со стороны. противоположной расположению деталей. Внешний вид варианта смонтированной платы показан на рис. 7.

В этих конструкциях применены элементы для поверхностного монтажа. Резисторы — типоразмеров 0805, 1206. оксидные конденсаторы — танталовые типоразмеров С, D. неполярные — К10-17в. Вилка ХР1 — три контакта от однорядной угловой вилки серии PLD-10R.

Трансформатор тока Т1 был снят с платы источника бесперебойного питания. Маркировка на трансформаторе — FALCO 9418. К сожалению, в Интернете никаких конкретных данных найти не удалось, но по своим параметрам (индуктивность и сопротивление обмотки) он близок к трансформаторам тока AS-103 или AS-104 фирмы Talema.

Еще одна схема датчика тока

Если габариты датчика тока не имеют значения, для его изготовления можно применить выводные детали. Схема такого устройства показана на рис. 8, номиналы некоторых элементов изменены по причине их наличия. Чертёж печатной платы этого варианта устройства показан на рис. 9, а внешний вид смонтированной платы — на рис. 10.

Читайте также:  Номиналы трансформаторов тока по первичному току

Схема датчика тока с измененными деталями

Рис. 8. Схема датчика тока с измененными деталями.

Печатная плата для схемы датчика тока

Рис. 9. Печатная плата для схемы датчика тока.

Внешний вид датчика тока

Рис. 10. Внешний вид датчика тока.

Датчик тока на микросхеме ZXCT1009F

Упростить схему активного датчика и увеличить крутизну передаточной характеристики датчика тока можно, применив специализированную микросхему ZXCT1009F.

О возможности применения этой микросхемы для измерения переменного тока было рассказано в [2]. Схема устройства показана на рис. 11. Назначение элементов R1 и С1 такое же, как в ранее описанных устройствах.

Диод VD1 защищает вход микросхемы DA1 от нештатной полярности входного напряжения. Эта микросхема работает как однополупериодный выпрямитель, напряжение на выходе интегрирующей цепи R3C2 будет пропорционально среднему значению тока нагрузки.

Схема датчика тока на микросхеме ZXCT1009F

Рис. 11. Схема датчика тока на микросхеме ZXCT1009F.

Печатная плата

Рис. 12. Печатная плата.

Размещение деталей на печатной плате

Рис. 13. Размещение деталей на печатной плате.

Детали устройства смонтированы на печатной плате из фольгированного с одной стороны стеклотекстолита, чертёж которой приведён на рис. 12. Расположение элементов показано на рис. 13, а внешний вид варианта смонтированной платы — на рис. 14. Применены элементы для поверх ностного монтажа.

При выборе напряжения питания активных датчиков не следует забывать о так называемом коэффициенте амплитуды Ка (или крест-факторе) потребляемого нагрузкой тока, который характеризует отношение амплитуды потребляемого тока Іа к его действующему (или эффективному) значению Іэф: Ка = Iа/Iэф.

Дело в том, что многие бытовые устройства, питающиеся от сети, имеют встроенный импульсный источник питания с выпрямителем на входе.

Сглаживающий конденсатор выпрямителя заряжается только вблизи максимума сетевого напряжения, и от сети потребляется ток только в эти моменты. Для переменного тока прямоугольной формы Ка = 1, для синусоидального — Ка = 1,41, а для импульсного источника — Кa = 2. 4.

Вид датчика

Рис. 14. Вид датчика.

Это означает, что в активных датчиках максимальное неискаженное выходное напряжение ииыима,с должно быть больше, чем напряжение Uвых на выходе датчика (см. рис. 1), по крайней мере, в Ка, раз, а напряжение питания — ещё больше.

Например, для датчика на ОУ (двухполупериодный выпрямитель) при Uвых = 2 В и Ка = 2 напряжение питания Uпит >= 4 В для ОУ структуры rail-to-rail или Uпит >= 5. 6 В для обычного ОУ.

Поскольку на микросхеме ZXCT1009F собран одполупериодный выпрямитель, при тех же условиях напряжение питания должно быть примерно в три раза больше, чем Uвых. При этом не следует забывать, что для питания самой микросхемы требуется напряжение не менее 1,5. 2 В.

Поскольку интегрирующие цепи на выходе датчиков высокоомные, к их выходам следует подключать нагрузку, сопротивление которой, по крайней мере, в десять раз больше сопротивления резистора в интегрирующей цепи.

Каждый из датчиков требует калибровки, которую можно провести с помощью амперметра действующего значения переменного тока, источника переменного напряжения, в качестве которого можно применить вторичную обмотку понижающего трансформатора, включённого в сеть, и мощного переменного резистора.

Источник

Трансформатор

Слово “трансформатор” образуется от английского слова “transform” – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения

Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

трансформатор напряжения

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

трансформатор в разборе

а с другой катушки два красных провода

обмотки трансформатора

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

трансформатор однофазный

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

ПЭТВ-2

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

трансформатор напряжения

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

шильдик трансформатора

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

как работает трансформатор

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

Главная формула трансформатора выглядит так.

формула трансформатора

U2 – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

k – коэффициент трансформации

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

закон сохранения мощности

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

однофазный трансформатор

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

Читайте также:  По участку цепи с некоторым сопротивлением течет переменный ток меняющийся по гармоническому закону

На схемах однофазный трансформатор обозначается так:

однофазный трансформатор обозначение на схеме

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

вторичные обмотки трансформатора

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

трехфазный трансформатор

На схемах трехфазные трансформаторы обозначаются вот так:

виды соединений обмоток трехфазного трансформатора

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Повышающий трансформатор

Это трансформатор, который повышает напряжение. Допустим, на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

трансформатор напряжения

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

работа трансформатора на холостом ходу

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

работа трансформатора на нагрузку

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

потребление тока лампочкой накаливания

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток

Хотя обмотки прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток

При обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

сопротивление первичной обмотки

Таким же образом проверяем и вторичную обмотку.

проверка вторичной обмотки

Отсюда делаем вывод, что наш трансформатор жив и здоров.

Похожие статьи по теме “трансформатор”

Источник

Модуль трансформатора тока ASM-010

Измерение переменного тока с помощью трансформатора тока достаточно удобно, поскольку это обеспечивает гальваническую развязку между измерительным прибором и измерительной цепью.

К сожалению, поступающий от такого трансформатора сигнал, в общем случае непригоден для аналого-цифрового преобразователя микроконтроллера, задачей которого является сбор и обработка информации в измерительной системе. Этот проект является своего рода «мостом», соединяющим эти два устройства.

В данном проекте использован трансформатор тока ASM-010 производства TALEMA. Он выполнен под пайку на печатной плате и предназначен для измерения тока в диапазоне 1…10 А с частотой 50/60 Гц. В примечании datasheet рекомендуется нагрузить его резистором 50 Ом, в результате чего напряжение на его клеммах будет линейной функцией тока.

На выходе трансформатора тока присутствует синусоидальное переменное напряжение с амплитудой не более нескольких десятков милливольт. Роль схемы заключается в усилении и выравнивании этого сигнала.

Напряжение от трансформатора поступает на вход прецизионного ​​ выпрямителя, реализованного на операционном усилителе OP07. Потенциометр P1 используется выбора коэффициента усиления. Диапазон может находиться в районе 1…200. Выход прецизионного выпрямителя подключен к повторителю напряжения, построенному на не дорогом и популярном операционном усилителе LM358. Это необходимо для исключения влияния паразитной емкости (например, длинный экранированный кабель), которая будет нарушать работу схемы. Резистор R3 частично компенсирует влияние токов, протекающих через входы микросхемы US1.

Сигнал с выхода первого повторителя поступает на очень простой RC-интегратор, который определяет его среднее значение. Такое усредненное значение полезно в ситуации, когда нам не важна форма импульсов. Постоянная времени этой схемы регулируется потенциометром P2, в то время как резистор R4 предотвращает ситуацию подключения конденсатора C1 напрямую к выходу US2A.

В идеале напряжение на выходе «DC» должно составлять около 32% амплитуды импульса от выхода «PULSE».

Напряжение, подаваемое на модуль, стабилизируется модулем LM78L09. Отрицательное напряжение подается с преобразователя ICL7660. Благодаря двухполярному источнику питания удалось обеспечить правильную работу дифференциальной схемы.

Правильно собранный модуль готов к подключению к источнику питания в диапазоне, допустимом для стабилизатора 78L09, то есть приблизительно 11 … 35 В. Ток потребления с незагруженными выходами составляет около 10 мА.

Самый простой способ выполнить регулировку усиления — пропустить через отверстие в трансформаторе тока провод, по которому течет переменный ток известного значения. Наблюдая за амплитудой выходных импульсов (или напряжением постоянного тока на выходе «DC» при самом высоком сопротивлении потенциометра P2), отрегулируйте усиление с помощью P1 так, чтобы весь желаемый диапазон измерения находился в пределах диапазона АЦП микроконтроллера. Следует помнить, что максимальное напряжение на выходе составляет приблизительно 6 В, ограниченное падением выхода на выходе OP07 минус падение на диоде D2.

Источник