Меню

Активное сопротивление индуктивность емкость в цепи переменного тока схемы векторные диаграммы



Активное сопротивление индуктивность емкость в цепи переменного тока схемы векторные диаграммы

§ 57. Цепь переменного тока с активным, индуктивным и емкостным сопротивлениями

На рис. 60, а изображена цепь переменного тока, в которую включены последовательно активное сопротивление r, индуктивность L, обладающая индуктивным сопротивлением ХL и емкость С, обладающая емкостным сопротивлением Хc.

Под действием переменного напряжения в этой цепи протекает переменный ток.
Выясним, чему равно общее напряжение на зажимах цепи. Построим векторную диаграмму тока и напряжений для рассматриваемой цепи (рис. 60, б). Так как сопротивления соединены последовательно, то в них протекает одинаковый ток. Отложим по горизонтали в выбранном масштабе вектор тока I. В цепи с активным сопротивлением ток и напряжение совпадают по фазе, поэтому вектор напряжения откладываем по вектору тока.
Напряжение на индуктивности опережает ток на угол φ = 90°. Поэтому вектор откладываем вверх под углом 90° к вектору тока.
В цепи с емкостью, наоборот, напряжение отстает от тока на угол φ = 90°. Поэтому вектор откладываем на диаграмме вниз под углом 90° к вектору тока.
Для определения общего напряжения, приложенного к зажимам цепи, сложим векторы и . Для этого отнимем от большего вектора вектор и получим вектор , выражающий векторную сумму этих двух напряжений. Теперь сложим векторы ( ) и . Суммой этих векторов будет диагональ параллелограмма — вектор , изображающий общее напряжение на зажимах цепи.
На основании теоремы Пифагора из треугольника напряжений АОБ следует, что

отсюда общее напряжение

(69)

Определим полное сопротивление цепи переменного тока, содержащей активное, индуктивное и емкостное сопротивления. Для этого разделим стороны треугольника напряжений АОБ на число I, выражающее силу тока в цепи, и получим подобный треугольник сопротивлений А′О′Б′ (рис. 59, в). Его сторонами являются сопротивления r, (ХLХc) и полное сопротивление цепи Z. Пользуясь теоремой Пифагора, можно написать, что

Z 2 =r 2 + (ХLХc) 2 .

Отсюда полное сопротивление цепи

Формула (70) может применяться и в частных случаях, когда ХL = 0 или Хc = 0.
Силу тока в цепи с активным, индуктивным и емкостным сопротивлениями определяют по закону Ома:

На векторной диаграмме (рис. 59, б) видно, что в рассматриваемой цепи ток и напряжение генератора не совпадают по фазе. Из треугольника напряжений следует, что

Источник

Активное сопротивление индуктивность емкость в цепи переменного тока схемы векторные диаграммы

Рассмотрим цепь (рис. 134), состоящую из сопротивления r. Влиянием индуктивности и емкости для простоты пренебрегаем. К зажимам цепи приложено синусоидальное напряжение

Рис. 134. Цепь, содержащая активное сопротивление
Рис. 134. Цепь, содержащая активное сопротивление

По закону Ома, мгновенное значение тока будет равно:

или, переходя к действующим значениям, получаем

Как следует из последнего выражения, вид закона Ома для цепи переменного тока, содержащей сопротивление r, тот же, что для цепи постоянного тока. Кроме того, из закона Ома видна пропорциональность между мгновенным значением напряжения и мгновенным значением тока. Отсюда следует, что в цепи переменного тока, содержащей сопротивление r, напряжение и ток совпадают по фазе. На рис. 135 даны кривые напряжения и тока и векторная диаграмма для рассматриваемой цепи, причем длины векторов обозначают действующие значения напряжения и тока.

Рис. 135. Графики и векторная диаграмма для цепи переменного тока, содержащей активное сопротивление
Рис. 135. Графики и векторная диаграмма для цепи переменного тока, содержащей активное сопротивление

Сопротивление проводников переменному току несколько больше их сопротивления постоянному току * (см. § 65). Поэтому сопротивление проводников переменному току называют активным в отличие от сопротивления, которое оказал бы этот проводник при постоянном токе. Обозначается оно также буквой r.

* ( Это объясняется тем, что при переменном токе наблюдается неравномерное распределение тока по сечению проводника, так что плотность тока будет возрастать от оси к поверхности проводника. Это явление называется поверхностным эффектом. Неравномерная плотность тока приводит к увеличению сопротивления проводника. Однако при стандартной частоте 50 гц, небольшом сечении и медных или алюминиевых проводах явление поверхностного эффекта сказывается слабо. При высокой частоте, большем сечении и стальных проводах оно значительно.)

В цепи, представленной на рис. 134, приложенное внешнее напряжение компенсирует падение напряжения в сопротивлении r, которое называется активным падением напряжения и обозначается Uа:

Читайте также:  Определить токи используя метод наложения

Мгновенное значение мощности в рассматриваемой цепи равно произведению мгновенных значений напряжения и тока:

На рис. 136 дана кривая мгновенной мощности за один период. Из чертежа видно, что мощность не является постоянной величиной, она пульсирует с двойной частотой * .

* ( Пульсацией называется изменение численного значения переменной величины при постоянстве ее знака.)

Рис. 136. Кривая мгновенной мощности цепи с активным сопротивлением
Рис. 136. Кривая мгновенной мощности цепи с активным сопротивлением

Среднее за период значение мощности называется активной мощностью, обозначается буквой Р и измеряется в запах.

Для рассматриваемой цепи с активным сопротивлением

т. е. формула мощности для цепи переменного тока с активным сопротивлением такая же, как формула мощности для цепи постоянного тока.

Активным сопротивлением обладают все проводники. В цепи переменного тока практически только одним активным сопротивлением обладают нити ламп накаливания, спирали электронагревательных приборов и реостатов, дуговые лампы, специальные бифилярные обмотки и прямолинейные проводники небольшой длины.

Источник

Цепь переменного тока с емкостью и активным сопротивлением. Векторные диаграммы. Фазовые соответствия между токами и напряжениями

В реальных цепях переменного тока с ёмкостью всегда имеется активное сопротивление-сопротивление проводов, активные потери в конденсаторе и т.д.. Поэтому реальную цепь с ёмкостью следует рассматривать состоящей из последовательно соединённых активного сопротивления R и конденсатора C.

Через конденсатор и резистор протекает один и тот же ток I = Iо∙sinωt,

поэтому в качестве основного выберем вектор тока и будем строить вектор напряжения, приложенного к этой цепи.

Напряжение, приложенное к цепи, равно век-ой сумме падений напряжений на конденсаторе и на резисторе: U = Uc + (*векторно)

Напряжение на резисторе будет совпадать по фазе с током:

= ∙sinωt , а напряжение на конденсаторе будет отставать по фазе от тока на угол π / 2:

Uc = Uоc∙sin(ωt — π/2 )

Построим векторы I, и Uc и, воспользовавшись формулой, найдём вектор U.

Из векторной диаграммы следует, что в рассматриваемой цепи ток I опережает по фазе приложенное напряжение U, но не на π/2, как в случае чистой ёмкости, а на угол φ. Этот угол может изменяться от 0 до π/2 и при заданной ёмкости С зависит от значения активного сопротивления: с увеличением R угол φ уменьшается.

Модуль вектора U равен:

U = = I = I∙Z ,где

Z = называется полным сопротивлением цепи.

Сдвиг по фазе между током и напряжением:

tgφ = Uc/ = (1/ωC)/R = 1/(ω∙R∙C)

16. Последовательная цепь переменного тока. Резонанс напряжений. Рассмотрим цепь переменного тока, содержащую индуктивность, ёмкость и резистор, соединённые последовательно.

Рис.4.24. Последовательная цепь переменного тока.

Через все эти элементы протекает один и тот же ток, поэтому в качестве основного выберем вектор тока, и будем строить вектор напряжения, приложенного к этой цепи.

Мы знаем, что напряжение на резисторе совпадает по фазе с током, напряжение на катушке опережает ток по фазе на π⁄2, а напряжение на ёмкости отстаёт от тока по фазе на π⁄2. Запишем эти напряжения в следующем виде:

Построим векторную диаграмму и найдём вектор U.

Рис.4.25. Векторная диаграмма для последовательной цепи переменного тока.

Из этой диаграммы находим модуль вектора приложенного к цепи напряжения и сдвиг фаз φ между током и напряжением:

U = = I·Z, где

Z = , называется полным сопротивлением цепи.

Из векторной диаграммы tgφ = (UL — Uc)/UR = .

Разность фаз между током и напряжением определяется соотношением векторов UL, Uc и UR. При UL — Uc > 0 угол φ положительный и нагрузка имеет индуктивный характер. При ULменьше Uc угол отрицательный и нагрузка имеет ёмкостной характер. См. рис.4.26, а при UL = Uc нагрузка имеет активный характер.

Рис. 4.26. Векторная диаграмма последовательной цепи:

а — нагрузка имеет ёмкостной характер; б — нагрузка имеет активный характер.

Разделив стороны треугольника напряжений на значение тока в цепи, получим треугольник сопротивлений (рис. 4.27), в котором R — активное сопротивление, Z — полное сопротивление, а X = XL — Xc — реактивное сопротивление.

Рис.4.27. Треугольник сопротивлений.

Кроме того, R = Z∙cosφ; X = Z∙sinφ.

Когда напряжения на индуктивности и ёмкости, взаимно сдвинутые по фазе на 180 градусов, равны по величине, то они полностью компенсируют друг друга (рис.4.26, б).

Читайте также:  Компенсационный метод измерения токов

Напряжение, приложенное к цепи, равно напряжению на активном сопротивлении, а ток в цепи совпадает по фазе с напряжением. Этот случай называется резонансом напряжений.

Условие резонанса напряжений:

ωо — угловая частота резонанса. Ток в цепи равен:

I = U / = U/R

Ток в цепи при этом достигает максимального значения, φ = 0, а cosφ = 1. Резонанс напряжений характеризуется обменом энергии между магнитным полем катушки и электрическим полем конденсатора. Увеличение магнитного поля катушки индуктивности происходит за счёт уменьшения энергии электрического поля в конденсаторе и наоборот. При резонансе напряжений напряжения на реактивных сопротивлениях XL и Хс могут заметно превышать приложенное к цепи напряжение.

U / UL = I∙Z / I∙XL = Z / XL или U∙L = U∙(XL / R), т.е. напряжение на индуктивности будет больше приложенного напряжения в XL/R раз. Это означает, что на отдельных участках цепи могут возникать опасные напряжения.

Вернёмся к формуле (4.31).

ωо = = , но ω = 2πf, значит 2πfо = , тогда

fо = , где

fо — частота при резонансе напряжений в герцах;

Источник

Построение векторных диаграмм

Достаточно сложным и чаще всего не изучаемым аспектом темы переменный ток является метод построения векторных диаграмм. Анализируя вынужденные электромагнитные колебания, мы уже обсудили сдвиг тока и напряжения на реактивных сопротивлениях (катушка индуктивности и конденсатор) по сравнению с активным сопротивлением (резистор). Тогда одним из задаваемых вопросов задачи является вопрос о направлении суммарного тока или напряжения в данный конкретный момент времени. Для ответа на этот вопрос и используется метод построения векторных диаграмм.

Векторная диаграмма — это изображение гармонически изменяющихся величин (текущего тока и напряжения) в виде векторов на плоскости.

Векторная диаграмма

Рис. 1. Векторная диаграмма

Построение векторных диаграмм происходит в прямоугольной декартовой системе координат. Построение начинается с проведения вектора, численно равного амплитудному значению тока в цепи. Данный вектор сонаправим в осью ОХ (рис. 1.1).

Т.к. напряжение на активном сопротивлении находится в одной фазе с током, то вектор амплитуды напряжения сонаправлен с вектором тока (рис. 1.2. красный).

На катушке напряжение опережает ток, поэтому отложим вектор амплитуды напряжения на катушке (\displaystyle <<U data-lazy-src=

\displaystyle \cos \varphi =\frac<R data-lazy-src=

  • \displaystyle Z— полное сопротивление цепи.
  • Вывод: задачи на данную тематику касаются поиска сдвига фаз между колебаниями силы тока и напряжения через график (рис. 1.4) или через соотношение (3), а также поиска полного напряжения в цепи также через график (рис. 1.4) или через соотношение (2).

    Источник

    §54. Последовательное соединение активного сопротивления, индуктивности и емкости

    В общем случае в цепях переменного тока обычно имеются все виды сопротивлений: активное, индуктивное и емкостное. Например, электрические двигатели переменного тока могут быть представлены эквивалентной схемой, состоящей из индуктивного сопротивления имеющихся в нем катушек и активного сопротивления образующих эти катушки проводов. Воздушные линии элек-

    Рис. 192. Схема цепи переменного тока, содержащей последовательно включенные активное, индуктивное и емкостное сопротивления (а), векторные диаграммы (б и а), кривые тока и напряжения и (г)

    Рис. 192. Схема цепи переменного тока, содержащей последовательно включенные активное, индуктивное и емкостное сопротивления (а), векторные диаграммы (б и а), кривые тока и напряжения и (г)

    тропередачи или кабельные линии обычно представляют в виде совокупности активного, индуктивного и емкостного сопротивлений. Активное сопротивление обусловлено сопротивлением электрических проводов, индуктивное — индуктивностью линии, а емкостное — емкостью, возникающей между отдельными проводами, между проводами и землей или же между отдельными жилами кабеля и между жилами кабеля и его оболочкой.

    Расчет электрических цепей переменного тока существенно отличается от расчета цепей постоянного тока, так как при переменном токе в активном, индуктивном и емкостном сопротивлениях имеют место различные сдвиги фаз между токами и напряжениями.

    Ток, напряжение и полное сопротивление. При последовательном включении в цепь переменного тока активного R, индуктивного XL и емкостного Хс сопротивлений (рис. 192, а) к ним приложены напряжения: активное ua=iR, индуктивное uL = iXL и емкостное uc=iXc. Мгновенное значение напряжения и, приложенного к данной цепи, согласно второму закону Кирхгофа равно алгебраической сумме напряжений:

    Но для действующих значений эта формула неприменима, так как между всеми указанными напряжениями имеется сдвиг по фазе (амплитудные значения этих напряжений не совпадают по

    Рис. 193. Треугольник со противлении

    Рис. 193. Треугольник со противлении

    времени). Чтобы учесть сдвиг по фазе между напряжениями uа, uL и uc. осуществляют сложение их векторов:

    Для этого строят векторную диаграмму, на которой откладывают в определенном масштабе векторы тока ? и напряжений ?a, ?L, ?C. Из этих напряжений первое совпадает по фазе с током, второе опережает его на 90°. Векторная диаграмма (рис. 192,б) построена для цепи, в которой индуктивное сопротивление XL больше емкостного Xc (вектор ?L, больше вектора ?C.), а рис. 192, в — для цепи, в которой XL меньше Хс (вектор ?L, меньше вектора ?C). Вектор напряжения U является замыкающим — он сдвинут по фазе относительно вектора тока ? на некоторый угол ?. Напряжение U (действующее значение) может быть определено из треугольника ЛВС по теореме Пифагора:

    Таким образом, из-за наличия угла сдвига фаз ? напряжение U всегда меньше алгебраической суммы Ua + UL + UC. Разность UL – UC = Up называется реактивной составляющей напряжения.

    Рассмотрим, как изменяются ток и напряжение в последовательной цепи переменного тока.

    В цепи, содержащей все три вида сопротивления, ток i и напряжение и оказываются сдвинутыми по фазе на некоторый угол ср (рис. 192, г), при этом 0 2 + [I?L-I/ (?С) ] 2 ), откуда получаем формулу закона Ома для последовательной цепи переменного тока:

    I = U / (? (R 2 + [?L-1 / (?С) ] 2 ) ) = U / Z (72)

    где Z = ? (R 2 + [?L-1 / (?С) ] 2 ) = ? (R 2 + (XL – Xc) 2 )

    Величину Z называют полным сопротивлением цепи, оно измеряется в омах. Разность ?L — l/(?C) называют реактивным сопротивлением цепи и обозначают буквой X. Следовательно, полное сопротивление цепи

    Z = ? (R 2 + X 2 )

    Соотношение между активным, реактивным и полным сопротивлениями цепи переменного тока можно также получить по теореме Пифагора из треугольника сопротивлений (рис. 193). Треугольник сопротивлений А’В’С’ можно получить из треугольника напряжений ABC (см. рис. 192,б), если разделить все его стороны на ток I.

    Угол сдвига фаз ? определяется соотношением между отдельными сопротивлениями, включенными в данную цепь. Из треугольника А’В’С (см. рис. 193) имеем:

    sin ? = X / Z; cos? = R / Z; tg? = X / R

    Например, если активное сопротивление R значительно больше реактивного сопротивления X, угол ? сравнительно небольшой. Если в цепи имеется большое индуктивное или большое емкостное сопротивление, то угол сдвига фаз ? возрастает и приближается к 90°. При этом, если индуктивное сопротивление больше емкостного, напряжение и опережает ток i на угол ?; если же емкостное сопротивление больше индуктивного, то напряжение и отстает от тока i на угол ?.

    Источник