Меню

Активно емкостное соединение ток будет



Цепь переменного тока с последовательным соединением активного, индуктивного и емкостного сопротивлений

Oпределение: Переменными называют токи и напряжения, изменяющиеся во времени, по величине и направлению. Их величина в любой момент времени называется мгновенным значением. Обозначаются мгновенные значения малыми буквами: i, u, e, p.

Токи, значения которых повторяются через равные промежутки времени, называются периодическими. Наименьший промежуток времени, через который наблюдаются их повторения, называется периодом и обозначается буквой Т. Величина, обратная периоду, называется частотой, т.е. и измеряется в герцах (Гц). Величина называется угловой частотой переменного тока, она показывает изменение фазы тока в единицу времени и измеряется в радианах, деленных на секунду

Максимальное значение переменного тока или напряжения называется амплитудой. Оно обозначается большими буквам с индексом »m» (например, Im). Существует также понятие, действующего значения переменного тока

Переменный ток можно математически записать в виде:

Рассмотрим цепь с активным, индуктивным и емкостным сопротивлениями, включенными последовательно (рис. 1.3.1).

Для анализа схемы разложим напряжение сети U на три составляющие:
UR — падение напряжения на активном сопротивлении,
UL — падение напряжения на индуктивном сопротивлении,
UC — падение напряжения на емкостном сопротивлении.

Ток в цепи I будет общим для всех элементов:

Следует отметить, что напряжения на отдельных участках цепи не всегда совпадают по фазе с током I.
Так, на активном сопротивлении падение напряжения совпадает по фазе с током, на индуктивном оно опережает по фазе ток на 90° и на емкостном — отстает от него на 90°.
Графически это можно показать на векторной диаграмме (рис. 1.3.2).

Изображенные выше три вектора падения напряжений можно геометрически сложить в один (рис. 1.3.3).

В таком соединении элементов возможны активно-индуктивный или активно-емкостный характеры нагрузки цепи. Следовательно, фазовый сдвиг имеет как положительный, так и отрицательный знак.
Интересным является режим, когда = 0.
В этом случае

Такой режим работы схемы называется резонансом напряжений.
Полное сопротивление при резонансе напряжений имеет минимальное значение:
, и при заданном напряжении U ток I может достигнуть максимального значения.
Из условия определим резонансную частоту

Явления резонанса напряжений широко используется в радиотехнике и в отдельных промышленных установках.

Цепь переменного тока с параллельным соединением активного, индуктивного и емкостного сопротивлений

Электрические цепи, в которых электрические величины (токи, напряжения и ЭДС) изменяются с течением времени по периодическому закону, принято называть цепями переменного тока.

Oпределение: Переменными называют токи и напряжения, изменяющиеся во времени, по величине и направлению. Их величина в любой момент времени называется мгновенным значением. Обозначаются мгновенные значения малыми буквами: i, u, e, p.

Токи, значения которых повторяются через равные промежутки времени, называются периодическими. Наименьший промежуток времени, через который наблюдаются их повторения, называется периодом и обозначается буквой Т. Величина, обратная периоду, называется частотой, т.е. и измеряется в герцах (Гц). Величина называется угловой частотой переменного тока, она показывает изменение фазы тока в единицу времени и измеряется в радианах, деленных на секунду Максимальное значение переменного тока или напряжения называется амплитудой. Оно обозначается большими буквам с индексом »m» (например, Im). Существует также понятие, действующего значения переменного тока (I).

Переменный ток можно математически записать в виде:

Здесь индекс выражает начальную фазу. Если синусоида начинается в точке пересечения осей координат, то = 0, тогда

Начальное значение тока может быть слева или справа от оси ординат. Тогда начальная фаза будет опережающей или отстающей.

Цепь параллельного включения конденсатора и катушки, обладающей активным сопротивлением и индуктивностью (рис. 1.4.1).

В этой схеме общим параметром для двух ветвей является напряжение U. Первая ветвь — индуктивная катушка — обладает активным сопротивлением R и индуктивностью L. Результирующее сопротивление Z1 и ток I1определяются по формуле:

, где

Поскольку сопротивление этой ветви комплексное, то ток в ветви отстает по фазе от напряжения на угол .

Покажем это на векторной диаграмме (рис. 1.4.2).

Спроецируем вектор тока I1 на оси координат. Горизонтальная составляющая тока будет представлять собой активную составляющую I1R, а вертикальная — I1L. Количественные значения этих составляющих будут равны:

где

Во вторую ветвь включен конденсатор. Его сопротивление

Этот ток опережает по фазе напряжение на 90°.
Для определения тока I в неразветвленной части цепи воспользуемся формулой:

<>

Его значение можно получить и графическим путем, сложив векторы I1 и I2(рис.1.4.3)
Угол сдвига между током и напряжением обозначим буквой j.
Здесь возможны различные режимы в работе цепи. При = +90° преобладающим будет емкостный ток, при = -90° — индуктивный. Возможен режим, когда = , т.е. ток в неразветвленной части цепи I будет иметь активный характер. Произойдет это в случае, когда I1L = I2, т.е. при равенстве реактивных составляющих тока в ветвях.

Н а векторной диаграмме это будет выглядеть так (рис. 1.4.4):

Такой режим называется резонансом токов. Также как в случае с резонансом напряжений, он широко применяется в радиотехнике.
Рассмотренный выше случай параллельного соединения R, L и C может быть также проанализирован с точки зрения повышения cosj для электроустановок. Известно, что cosjявляется технико-экономическим параметром в работе электроустановок. Определяется он по формуле:

, где

Р — активная мощность электроустановок, кВт,
S — полная мощность электроустановок, кВт.
На практике cosj определяют снятием со счетчиков показаний активной и реактивной энергии и, разделив одно показание на другое, получают tgj . Далее по таблицам находят и cosj. Чем больше cosj, тем экономичнее работает энергосистема, так как при одних и тех же значениях тока и напряжения (на которые рассчитан генератор) от него можно получить большую активную мощность.
Снижение cosj приводит к неполному использованию оборудования и при этом уменьшается КПД установки. Тарифы на электроэнергию предусматривают меньшую стоимость 1 киловатт-часа при высоком cosj, в сравнении с низким. К мероприятиям по повышению cos относятся:
— недопущение холостых ходов электрооборудования,
— полная загрузка электродвигателей, трансформаторов и т.д.
Кроме этого, на cosj, положительно сказывается подключение к сети статических конденсаторов.

17. Трехфазный переменный ток и его получение

Oпределение: Трехфазные электрические цепи представляют собой совокупность трех однофазных цепей переменного тока, сдвинутых по фазе относительно друг друга на 1/3 периода.
Источником трехфазного переменного тока является генератор, на статоре которого расположены три одинаковые обмотки Аx, By, Cz, размещенные под углом 120°.

При вращении ротора, представляющего собой двухполюсный магнит, в каждой фазной обмотке статора индуктируется ЭДС:

Читайте также:  Как работает рельсовая цепь постоянного тока

Графически ЭДС можно изобразить тремя синусоидами, сдвинутыми на 1/3 периода, или тремя векторами, находящимися под углом 120° друг к другу.

Дата добавления: 2018-06-01 ; просмотров: 5121 ; Мы поможем в написании вашей работы!

Источник

Расчет емкостного тока сети

В электротехнике существует такое понятие как емкостный ток, более известный в качестве емкостного тока замыкания на землю в электрических сетях. Данное явление возникает при повреждении фазы, в результате чего возникает так называемая заземляющая дуга. Для того чтобы избежать серьезных негативных последствий, необходимо своевременно и правильно выполнять расчет емкостного тока сети. Это позволит уменьшить перенапряжение в случае повторного зажигания дуги и создаст условия для ее самостоятельного угасания.

Что такое емкостный ток

Емкостный ток возникает как правило на линиях с большой протяженностью. В этом случае земля и проводники работают аналогично обкладкам конденсатора, способствуя появлению определенной емкости. Поскольку напряжение в ЛЭП обладает переменными характеристиками, это может послужить толчком к его появлению. В кабельных линиях, напряжением 6-10 киловольт, его значение может составить 8-10 ампер на 1 км протяженности.

Расчет емкостного тока сети

В случае отключения линии, находящейся в ненагруженном состоянии, величина емкостного тока может достигнуть нескольких десятков и даже сотен ампер. В процессе отключения, когда наступает момент перехода тока через нулевое значение, напряжение на расходящихся контактах будет отсутствовать. Однако, в следующий момент вполне возможно образование электрической дуги.

Если значение емкостного тока не превышает 30 ампер, это не приводит к каким-либо серьезным повреждениям оборудования в зоне опасных перенапряжений и замыканий на землю. Электрическая дуга, появляющаяся на месте повреждения, достаточно быстро гаснет с одновременным появлением устойчивого замыкания на землю. Все изменения емкостного тока происходят вдоль электрической линии, в направлении от конца к началу. Величина этих изменений будет пропорциональна длине линии.

Для того чтобы уменьшить ток замыкания на землю, в сетях, напряжением от 6 до 35 киловольт, осуществляется компенсация емкостного тока. Это позволяет снизить скорость восстановления напряжения на поврежденной фазе после гашения дуги. Кроме того, снижаются перенапряжения в случае повторных зажиганий дуги. Компенсация выполняется с применением дугогасящих заземляющих реакторов, имеющих плавную или ступенчатую регулировку индуктивности.

Настройка дугогасящих реакторов выполняется в соответствии с током компенсации, величина которого равна емкостному току замыкания на землю. При настройке допускается использование параметров излишней компенсации, когда индуктивная составляющая тока будет не более 5 ампер, а степень отклонения от основной настройки – 5%.

Выполнение настройки с недостаточной компенсацией допустимо лишь в том случае, когда мощность дугогасящего реактора является недостаточной. Степень расстройки в этом случае не должна превышать 5%. Главным условием такой настройки служит отсутствие напряжения смещения нейтрали, которое может возникнуть при несимметричных емкостях фаз электрической сети – при обрыве проводов, растяжке жил кабеля и т.д.

Для того чтобы заранее предупредить возникновение аварийных ситуаций и принять соответствующие меры, необходимо рассчитать емкостный ток на определенном участке. Существуют специальные методики, позволяющие получить точные результаты.

Пример расчета емкостного тока сети

Значение емкостного тока, возникающего в процессе замыкания фазы на землю, определяется лишь величиной емкостного сопротивления сети. По сравнению с индуктивными и активными сопротивлениями, емкостное сопротивление обладает более высокими показателями. Поэтому первые два вида сопротивлений при расчетах не учитываются.

Образование емкостного тока удобнее всего рассматривать на примере трехфазной сети, где в фазе А произошло обычное замыкание. В этом случае величина токов в остальных фазах В и С рассчитывается с помощью следующих формул:

Модули токов в этих фазах Iв и Iс, учитывая определенные допущения С = СА = СВ = СС и U = UА = UВ = UС можно вычислить при помощи еще одной формулы: Значение тока в земле состоит из геометрической суммы токов фаз В и С. Формула целиком будет выглядеть следующим образом: При проведении практических расчетов величина тока замыкания на землю может быть определена приблизительно по формуле: , где Uср.ном. – является фазным средненоминальным напряжением ступени, N – коэффициент, а l представляет собой суммарную длину воздушных и кабельных линий, имеющих электрическую связь с точкой замыкания на землю (км). Оценка, полученная с помощью такого расчета, указывает на независимость величины тока от места замыкания. Данная величина определяется общей протяженностью всех линий сети.

Как компенсировать емкостные токи замыкания на землю

Работа электрических сетей, напряжением от 6 до 10 киловольт, осуществляется с изолированной или заземленной нейтралью, в зависимости от силы тока замыкания на землю. Во всех случаях в схему включаются дугогасящие катушки. Нейтраль заземляется с помощью дугогасящих катушек, для того чтобы компенсировать токи замыкания на землю. Когда возникает однофазное замыкание на землю, работа всех электроприемников продолжается в нормальном режиме, а электроснабжение потребителей не прерывается.

Значительная протяженность городских кабельных сетей приводит к образованию в них большой емкости, поскольку каждый кабель является своеобразным конденсатором. В результате, однофазное замыкание в подобных сетях, может привести к увеличению тока на месте повреждения до нескольких десятков, а в некоторых случаях – и сотен ампер. Воздействие этих токов приводит к быстрому разрушению изоляции кабеля. Из-за этого, в дальнейшем, однофазное замыкание становится двух- или трехфазным, вызывая отключение участка и прерывая электроснабжение потребителей. В самом начале возникает неустойчивая дуга, постепенно превращающаяся в постоянное замыкание на землю.

Когда ток переходит через нулевое значение, дуга сначала пропадает, а затем появляется вновь. Одновременно на неповрежденных фазах возникает повышение напряжения, которое может привести к нарушению изоляции на других участках. Для погашения дуги в поврежденном месте, необходимо выполнить специальные мероприятия по компенсации емкостного тока. С этой целью к нулевой точке сети подключается индуктивная заземляющая дугогасящая катушка.

Схема включения дугогасящей катушки, изображенная на рисунке, состоит из заземляющего трансформатора (1), выключателя (2), сигнальной обмотки напряжения с вольтметром (3), дугогасящей катушки (4), трансформатора тока (5), амперметра (6), токового реле (7), звуковой и световой сигнализации (8).

Конструкция катушки состоит из обмотки с железным сердечником, помещенной в кожух, наполненный маслом. На главной обмотке имеются ответвления, соответствующие пяти значениям тока для возможности регулировки индуктивного тока. Один из выводов включается в нулевую точку обмотки трансформатора, соединенной звездой. В некоторых случаях может использоваться специальный заземляющий трансформатор, а соединение вывода главной обмотки осуществляется с землей.

Читайте также:  Оки токи рации детские

Таким образом, для обеспечения безопасности выполняется не только расчет емкостного тока, но и проводятся мероприятия по его компенсации с помощью специальных устройств. В целом это дает хорошие результаты и обеспечивает безопасную эксплуатацию электрических сетей.

Источник

Цепь с активно-емкостной нагрузкой

Рисунок 7 – Схема, временные диаграммы и треугольники
напряжений, сопротивлений и мощностей цепи
с активным и емкостным элементами

В этом случае уравнение напряжения цепи (рисунок 7,а) имеет вид:

Напряжение на активном сопротивлении

совпадает по фазе с током.

Напряжение на емкости

отстает по фазе от тока на угол .

Таким образом, напряжение , приложенное к цепи, будет равно

На рисунке 7,б изображена векторная диаграмма цепи , . Вектор напряжения совпадает с вектором тока, вектор отстает от вектора тока на угол 90 о . Из диаграммы следует, что вектор напряжения, приложенного к цепи, равен геометрической сумме векторов и :

Выразив и через ток и сопротивления, получим

Последнее выражение представляет собой закон Ома цепи и :

где – полное сопротивление, Ом.

Из векторной диаграммы следует, что напряжение цепи и отстает по фазе от тока на угол и его мгновенное значение

Временные диаграммы и изображены на рисунке 7,в. Разделив стороны треугольника напряжений (рисунок 7,б) на ток, получим треугольник сопротивлений (7,д), из которого можно определить косинус угла сдвига фаз между током и напряжением:

Энергетические процессы в цепи с активным и емкостным элементами можно рассматривать как совокупность процессов, происходящих отдельно в цепи с и с . Из сети непрерывно поступает активная мощность, которая выделяется в активном сопротивлении в виде тепла. Реактивная мощность, обусловленная электрическим полем емкости , непрерывно циркулирует между источником энергии и цепью. Ее среднее значение за период равно нулю.Умножив стороны треугольника напряжений (рисунок 7,б) на ток, получим треугольник мощностей (рисунок 7,г). Стороны треугольника мощностей представляют:

– активную мощность цепи, Вт;

– реактивную (емкостную) мощность цепи, ВАр;

– полная мощность цепи, ВА;

– коэффициент мощности цепи.

На основании вышеизложенного можно составить таблицу 1.

Таблица 1Пассивные элементы цепей синусоидального тока

Основные понятия R L C
Мгновенные значения напряжения и тока
Комплексные амплитуды
Комплексные действующие значения
Сопротив-ление активное реактивное индуктивное реактивное емкостное
Комплексное сопротив-ление
Комплексная проводимость

Экспериментальная часть – опыт 1

Для цепи с последовательным соединением резистора и конденсатора, а также резистора и индуктивности измерьте потребляемую активную мощность, действующие значения напряжений на резисторе UR и реактивном элементе UC, UL и ток I. Рассчитайте угол сдвига фаз φ, полное сопротивление цепи Z, реактивное сопротивление X и активное сопротивление R, постройте векторную диаграмму.

Порядок выполнения работы

● Соберите цепь согласно схеме (рис. 6.2.4), подсоедините регулируемый источник синусоидального напряжения и установите максимальную амплитуду синусоидального напряжения с частотой f = 1000 Гц.

Таблица 1 – Результаты измерений и вычислений параметров
катушки и конденсатора методом трех вольтметров

Цепь Измерено Вычислено
В В В В А Ом Ом Ом Ом Гн Ом мкФ
,
,

(Значения и определяем по векторной диаграмме)

ЛАБОРАТОРНАЯ РАБОТА №4

Последовательное соединение конденсатора и катушки индуктив­ности. Понятие о резонансе напряжений

2.1 Цель работы: изучение явления резонанса напряжений в цепи переменного тока с последовательным соединением , и , приобретение навыков по настройке цепи и по производству измерений, освоение методики и практики вычислений и построения векторных диаграмм по данным измерений.

Источник

Компенсация емкостных токов в сетях с изолированной нейтралью

1. Основные характеристики ОЗЗ

Одним из наиболее частых видов повреждений на линиях электропередачи является однофазное замыкание на землю (ОЗЗ) — это вид повреждения, при котором одна из фаз трехфазной системы замыкается на землю или на элемент электрически связанный с землей. ОЗЗ является наиболее распространенным видом повреждения, на него приходится порядка 70-90 % всех повреждений в электроэнергетических системах. Протекание физических процессов, вызванных этим повреждением, в значительной мере зависит от режима работы нейтрали данной сети.

В сетях, где используется заземленная нейтраль, замыкание фазы на землю приводит к короткому замыканию. В данном случае ток КЗ протекает через замкнутую цепь, образованную заземлением нейтрали первичного оборудования. Такое повреждение приводит к значительному скачку тока и, как правило, незамедлительно отключается действием РЗ, путем отключения поврежденного участка.

Электрические сети классов напряжения 6-35 кВ работают в режиме с изолированной нейтралью или с нейтралью, заземленной через большое добавочное сопротивление. В этом случае замыкание фазы на землю не приводит к образованию замкнутого контура и возникновению КЗ, а ОЗЗ замыкается через емкости неповрежденных фаз.

Величина этого тока незначительна (достигает порядка 10-30 А) и определяется суммарной емкостью неповрежденных фаз. На рис. 1 показаны схемы 3-х фазной сети в режимах до и после возникновения ОЗЗ.

Рисунок 1 – Схема сети с изолированной нейтралью а) в нормальном режиме; б) при ОЗЗ
Такое повреждение не требует немедленного отключения, однако, его длительное воздействие может привести к развитию аварийной ситуации. Однако при ОЗЗ в сетях с изолированной нейтралью происходят процессы, влияющие на режим работы электрической сети в целом.

На рис. 2 представлена векторная диаграмма напряжений.

Рисунок 2 – Векторные диаграммы напряжений а) в нормальном режиме; б) при ОЗЗ

При ОЗЗ происходит нарушение симметрии линейных фазных напряжений, напряжение поврежденной фазы снижается практически до 0, а двух “здоровых” фаз поднимаются до уровня линейных. При этом линейные напряжения остаются неизменными.

Компенсация емкостных токов в сетях с изолированной нейтралью

Сети 6-35 кВ работают, как правило, с изолированной нейтралью и относятся к сетям с малым током замыкания на землю, при полном (металлическом) замыкании на землю одной фазы такой сети напряжение поврежденной фазы относительно земли становится равным нулю, а значения напряжения неповрежденных фаз относительно земли увеличиваются до значений междуфазного напряжения, то есть в √3 раз:

Iса = Icb = √3 · Ic0 = √3 · U · ф · ω · С,

где Ic0 — емкостный ток фазы в нормальном режиме.

Поскольку векторы напряжений на неповрежденных фазах, а следовательно, и емкостных токов на землю этих фаз сдвинуты на 60⁰, ток в месте замыкания на землю поврежденной фазы равен:

Ic = √3 · Iса = 3 · Ic0 = 3 Uф · ω · С.

Читайте также:  Ток через конденсатор при зарядке

Соответственно емкостные токи в неповрежденных фазах также возрастают в √3 раз.

При проектировании сетей ток Iс может приближенно определяться следующим образом:

— для воздушных сетей: Iс = U · L / 350

— для кабельных сетей: Iс = U · L / 10,

где U — среднеэксплуатационное значение линейного напряжения, кВ; L — длина электрически связанной сети данного напряжения, км.

Ток Ic во много раз меньше тока междуфазных замыканий, однако при больших его значениях возникает угроза повреждения оборудования (в сетях 6-10 кВ), перехода однофазного замыкания на землю в междуфазное, а также возникновения перемежающейся дуги вызывающей опасные перенапряжения в сетях 20-35 кВ.

С незаземленными нейтралями могут работать сети 6 кВ при Ic ≤ 30 А, 10 кВ при Ic ≤ 20 А, 15-20 кВ при Ic ≤ 15 А. 35 кВ при Ic ≤ 10 А.

При больших емкостных токах для их компенсации устанавливаются дугогасящие заземляющие реакторы. При полном замыкании на землю одной фазы дугогасящий реактор оказывается под фазным напряжением и через место замыкания на землю проходят токи емкостный и индуктивный, отличающиеся по фазе на 180⁰ и взаимно компенсирующие друг друга. Мощность реактора выбирается по полному емкостному току замыкания на землю с учетом перспективы на 8-10 лет и округляется до ближайшего стандартного значения.

На подстанциях, трансформаторы которых работают раздельно, при емкостном токе каждой секции шин, превышающем допустимые значения, дугогасящие реакторы устанавливаются на обеих секциях. если емкостный ток секции меньше допустимого, а суммарный ток двух секций превышает допустимый, на подстанции устанавливается один дугогасящий реактор, который выбирается по суммарному емкостному току обеих секций и присоединяется к секции с большим током.

Последствия ОЗЗ

Несмотря на преимущества изолированной нейтрали, такой режим работы имеет ряд недостатоков:

  1. В зависимости от разветвленности сети емкостной ток может находиться в пределах от 0,1 до 500 ампер. Такая величина тока может представлять опасность для животных и людей, находящихся рядом с местом замыкания, по этой причине данные замыкания нужно выявлять и отключать, так же, как это делается и в сетях с глухозаземленной нейтралью.
  2. В большинстве случаев при ОЗЗ возникает дуговое замыкание на землю, которое может носить прерывистый характер. В таком случае, в процессе дугового замыкания возникают перенапряжения, превышающие в 2-4 раза номинальное фазное напряжение. Изоляция в процессе замыкания может не выдержать такие перенапряжения, вследствие чего возможны возникновения пробоя изоляции в любой другой точке сети и тогда замыкание развивается в двойное короткое замыкание на землю.
  3. В процессе развития и ликвидации ОЗЗ в трансформаторах напряжения возникает эффект феррорезонанса, что с высокой вероятностью приводит к их преждевременному выходу из строя.

Несмотря на перечисленные недостатки ОЗЗ не требует немедленного ликвидации повреждения. Согласно ПУЭ, при возникновении ОЗЗ возможно эксплуатация сети без отключения аварии в течении 4 часов, которые выделяются на поиск поврежденного участка.

Защита, реагирующая на наложенный ток.

Для повышения устойчивости функционирования защит от однофазных замыканий на землю, реагирующих на ток замыкания не промышленной частоты, была разработана защита, реагирующая на наложенный ток. Наложенный ток может быть частотой как выше промышленной, так и ниже. Для создания тока повышенной частоты возможно использование нелинейного сопротивления, включенного между нейтралью сети и землёй. Однако данное устройство значительно повышает стоимость таких защит и может снизить надёжность функционирования защиты. Также можно отметить тот факт, что значительная высокочастотная составляющая может присутствовать в токах присоединений и в нормальном режиме. Это в первую очередь относится к сетям, связанным с производствами, имеющими нелинейную нагрузку. В таких случаях описанный способ защиты непригоден. Кроме того, как показывают некоторые исследования, гармоники с частотой 100 Гц появляются почти в 2 раза чаще, чем, например, с частотой 25 Гц и амплитуды их намного больше.

К основным недостаткам защит, реагирующих на наложенный ток частотой ниже промышленной, можно отнести необходимость подключения в нейтрали сети специального устройства для создания контрольного тока, влияние на устойчивость функционирования защиты погрешностей ТТНП, возрастающих при уменьшении рабочей частоты, усложнение схемы первичной коммутации из-за необходимости подключения источника наложенного тока и трудности подключения источника вспомогательного тока при использовании в сети нескольких ДГР, установленных на разных объектах. Также не исключены сложности отстройки от естественных гармонических составляющих при внешних дуговых перемежающихся ОЗЗ, при которых спектр тока зависит от параметров сети и режима заземления её нейтрали, положения точки ОЗЗ в сети.

Защиты на централизованном принципе лишены недостатков индивидуальных защит, таких как ложные срабатывания, связанные с переходными процессами на неповрежденных линиях. В централизованных защитах в основном применяют сравнение амплитудных или действующих значений токов нулевой последовательности. Поврежденный фидер определяется на основе сравнения токов нулевой последовательности по всем присоединениям и выборе присоединения с максимальным током нулевой последовательности. Расчет этих значений может проводиться как в начальный момент времени, то есть, основываясь на переходных величинах замыкания, так и в установившемся режиме. Кроме того, возможно применение высших гармонических составляющих токов нулевой последовательности либо наложенного тока с частотой, отличной от промышленной. Для расширения области применения на подстанциях с большим числом присоединений, возможно введение в такие защиты дополнительной информации, которая позволяет произвести отстройку от действия в некоторых сложных режимах, например, получение информации о напряжении нулевой последовательности с другой секции шин подстанции может повысить чувствительность.

Расчет суммарного тока ОЗЗ

При замыкании на землю фазы одной из нескольких ЛЕП, что включенные к общему источнику, суммарный ток в месте замыкания за счет емкостных токов всех ЛЕП можно рассчитать несколькими методами.

Первый метод заключается в использовании удельных емкостей ЛЭП. Этот способ расчета даст наиболее точный результат и является предпочтительным. Удельные емкости ЛЭП можно взять из справочной литературы, или же из технических характеристик кабеля, предоставляемых заводом-изготовителем.

Выражение для определения тока ОЗЗ:

где С∑ – суммарная емкость фазы всех ЛЕП, причем С∑ = Суд l; Суд – удельная емкость фазы сети относительно земли, Ф/км; l – общая длина проводника одной фазы сети.

Второй метод применим для сетей с кабельными ЛЭП. Ток замыкания на землю для такой сети можно определить по эмпирической формуле:

Источник