Меню

Активная нагрузка в цепях синусоидального тока



Мощность в цепи синусоидального тока

Мощность в цепи синусоидального тока

Активная мощность цепи синусоидального тока

Когда синусоидальное напряжение прикладывается к резистивной нагрузке, в ней возникает синусоидальный ток. При этом ток и напряжение совпадают по фазе, то есть оба они достигают положительных и отрицательных амплитудных значений одновременно (рис. 1).

Мощность, которая выделяется в чисто резистивной нагрузке определяется как произведение напряжения на ток. Кривую мгновенных значений мощности можно построить, перемножая мгновенные значения напряжения и тока, взятые попарно в различные моменты времени

p = u × i

Среднее значение мощности (она пульсирует с двойной частотой) выражается через действующие значения напряжения и тока на резисторе:

P = U × I

или через омическое сопротивление R в Омах

P = I 2 × R и P = U 2 / R .

Она называется активной мощностью.

Когда конденсатор подключен к переменному синусоидальному напряжению, в нем возникает синусоидальный ток, опережающий напряжение на 90о (рис. 2).

Мгновенная мощность, потребляемая конденсатором (как и любой другой цепью) определяется как произведение напряжения и тока:

p = u × i

График изменения этой мощности можно построить, перемножая попарно ординаты графиков u ( t ) и i ( t ), взятые в один и тот же момент времени. Полученная таким образом кривая (рис. 2) представляет собой синусоиду двойной частоты с амплитудой.

QC = UCm × ICm /2 = UC × IC.

Когда p >0, конденсатор заряжается, потребляя энергию и запасая ее в электрическом поле. Когда p QC является максимальной мощностью, потребляемой или отдаваемой конденсатором, и называется емкостной реактивной мощностью.

Средняя (активная) мощность, потребляемая конденсатором, равна нулю.

Когда катушка индуктивности подключена к переменному синусоидальному напряжению, в ней возникает синусоидальный ток, отстающий по фазе от напряжения на 90о (рис. 3).

Изменение во времени мгновенной мощности, потребляемой в катушке, может быть представлено на графике (рис. 5.5.1) путем перемножения мгновенных значений тока i и напряжения u . Положительная полуволна кривой мощности равнозначна подведению энергии к катушке. Во время отрицательной полуволны катушка отдает запасенную ранее энергию магнитного поля. В идеальной катушке потерь активной мощности нет. В действительности же возвращаемая энергия всегда меньше потребляемой из-за потерь энергии в активном сопротивлении катушки.

В идеальной катушке (при R =0) график мощности p ( t ) представляет собой синусоиду двойной частоты (см. рис. 3) с амплитудой

QL = ULm ILm /2 = UL IL.

Это значение является максимальной мощностью, потребляемой или отдаваемой идеальной катушкой индуктивности. Она называется индуктивной реактивной мощностью.

Средняя (активная) мощность, потребляемая такой катушкой, равна нулю.

Лабораторная работа 7

Мощность в цепи синусоидального тока

Цель работы: Экспериментально определить величину активной, емкостной и индуктивной реактивной мощности прямым и косвенным измерением.

Снимите с помощью виртуального осциллографа синусоидальные кривые напряжения и тока в резистивной цепи, сделайте бумажные копии осциллограмм и постройте кривую мощности, перемножая мгновенные значения напряжения и тока.

Порядок выполнения эксперимента

· Соберите цепь согласно схеме (рис.4), подключите источник синусоидального напряжения и установите следующее напряжение с помощью осциллографа: U = 5 В, f = 0,5 кГц.

· Включите виртуальный приборы V 0, A 1 и осциллограф.

· «Подключите» два входа осциллографа к приборам V 0 и A 1, а остальные отключите.

· Установите параметры развёртки осциллографа так, чтобы на экране было изображение примерно одного-двух периодов напряжения и тока.

· Включите блок «Приборы II », выбирая из меню прибор «Активная мощность», подключите его к V 0 и A 1 и запишите значение активной мощности:

P = …. Вт

· Перенесите осциллограммы напряжения и тока на бумагу (рис. 5).

· Определите мгновенные значения напряжения и тока для моментов времени, указанных в табл. 1, и затем постройте кривую мощности на графике (рис. 6)

Источник

Мощность в цепях синусоидального тока

8.7.1. Мощность в цепи однофазного тока. При протекании токов в нагрузке происходит потеря энергии и мощности. Если нагрузка представляет собой активное сопротивление R (например, электрическая печь, лампы накаливания и т.п.), то протекающий в ней ток по фазе совпадает с приложенным напряжением (или ЭДС). Мгновенная мощность, потребляемая нагрузкой

Выражение для мгновенной активной мощности перепишем в виде

Мгновенная мощность колеблется в пределах от 0 до с удвоенной частотой по сравнению с напряжением и током и принимает только положительные значения. Среднее значение мгновенной мощности, потребляемой нагрузкой с активным сопротивлением , называется активной мощностью . Эта мощность безвозвратно теряется (рассеивается) в активных сопротивлениях энергосистемы.

Активная мощность измеряется в ваттах (Вт): 1 Вт = 1 Дж/с. Активную мощность СГ электростанций обычно выражают в мегаваттах (1МВт=10 6 Вт) или (1МВт=10 3 кВт); активную мощность крупных электростанций и энергосистем иногда выражают в гигаваттах (1ГВт=10 3 МВт). Для измерения активной мощности используются ваттметры.

Однако потребители электрической энергии в энергосистемах очень редко являются активными сопротивлениями; зачастую потребители представляют собой активно-индуктивные сопротивления. В этом случае активная мощность вычисляется по формуле

где — угол сдвига между векторами тока и напряжения (в отличие от активных сопротивлений в этом случае вектор тока отстаёт от вектора напряжения на угол ).

Величина в общем случае активно-реактивной цепи называется полной или кажущейся мощностью. Полная мощность вычисляется в вольт-амперах (ВА); в энергетике полную мощность представляют в мегавольт-амперах (МВА). Физический смысл полной мощности — это наибольшая активная мощность электроустановки, возможная при данных значениях и , т.е. при ; её нельзя измерить приборами, а можно только вычислить.

Читайте также:  Алюминий хорошо проводит электрический ток это вещество или химический элемент

Отношение активной мощности к полной мощности , называется коэффициентом мощности ; это характеристика энергетической эффективности электроустановки. Коэффициент мощности характеризует эффективность использования генерирующих мощностей, чем выше , тем выше и эффективность.

В электротехнике используется понятие треугольника мощностей — это прямоугольный треугольник, гипотенузой которого является полная мощность, а катетами активная и реактивная мощности. Реактивная мощность определяется по формуле

или из треугольника мощностей .

Реактивная мощность имеет колебательный характер со средним значением равным нулю; полная и активная мощности могут быть только положительными, реактивная мощность может принимать как положительные, так и отрицательные значения. В отличие от активной мощности она не требует для своего производства расхода энергии на электростанциях и не теряется безвозвратно в элементах энергосистемы. Она генерируется реактивными элементами и поочерёдно запасается в индуктивностях и конденсаторах. Реактивная мощность вычисляется в вольт-амперах реактивных (ВАр); в энергетике реактивную мощность представляют в мегавольт-амперах реактивных (МВАр). Реактивная мощность может быть измерена специальными электроизмерительными приборами.

8.7.2. Мощность трёхфазной системы. Под активной мощностью трёхфазной системы понимают сумму активных мощностей фаз нагрузки и активной мощности в сопротивлении нулевого провода

Аналогично реактивная мощность

Если нагрузка симметричная, то

где – угол между напряжением на фазе нагрузки и током фазы нагрузки.

При симметричной нагрузке

При симметричной нагрузке независимо от её соединения в звезду или треугольник

где – линейное напряжение в нагрузке; – линейный ток нагрузки. Поэтому часто используют следующие соотношения:

Для измерения активной мощности трёхфазной системы в общем случае (несимметричная нагрузка и наличие нулевого провода) необходимо три ваттметра включить по схеме рис.8.21. Активная мощность системы равна сумме показаний трёх ваттметров.

Рисунок 8.21. Измерение мощности в трёхфазной цепи с помощью трёх ваттметров

При отсутствии нулевого провода измерение мощности производят двумя ваттметрами, включёнными по схеме на рис.8.22. Сумма показаний двух ваттметров при этом даёт полную мощность системы, независимо от того в звезду или треугольник соединена нагрузка (треугольник нагрузки всегда может быть преобразован в эквивалентную звезду).

Рисунок 8.22. Измерение мощности в трёхфазной цепи без нулевого провода с помощью двух ваттметров

Показание первого ваттметра равно , второго , но

При симметричной нагрузке достаточно измерить мощность одной из фаз и результат утроить.

Источник

Активная мощность цепи переменного тока

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Соотношение энергий

Соотношение энергий

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

Прибор Мощность бытовых приборов, Вт/час
Зарядное устройство 2
Люминесцентная лампа ДРЛ От 50
Акустическая система 30
Электрический чайник 1500
Стиральной машины 2500
Полуавтоматический инвертор 3500
Мойка высокого давления 3500

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Генерация активной составляющей

Генерация активной составляющей

Обозначение реактивной составляющей:

Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Схема симметричной нагрузки

Схема симметричной нагрузки

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.

Читайте также:  Концентрическая обмотка машин переменного тока

Расчет трехфазной сети

Расчет трехфазной сети

Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P 2 + Q 2 , и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: xL = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

Диаграмма треугольников напряженийДиаграмма треугольников напряжений

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL — QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит:

  1. Значительно уменьшается нагрузка силовых трансформаторов;
  2. Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  3. У сигнальных и радиоустройств уменьшаются помехи;
  4. На порядок уменьшаются гармоники в электрической сети.

В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

Источник

Активная нагрузка в цепях синусоидального тока

Передача энергии w по электрической цепи (например, по линии электропередачи), рассеяние энергии, то есть переход электромагнитной энергии в тепловую, а также и другие виды преобразования энергии характеризуются интенсивностью, с которой протекает процесс, то есть тем, сколько энергии передается по линии в единицу времени, сколько энергии рассеивается в единицу времени. Интенсивность передачи или преобразования энергии называется мощностью р. Сказанному соответствует математическое определение:

Выражение для мгновенного значения мощности в электрических цепях имеет вид:

Приняв начальную фазу напряжения за нуль, а сдвиг фаз между напряжением и током за , получим:

Итак, мгновенная мощность имеет постоянную составляющую и гармоническую составляющую, угловая частота которой в 2 раза больше угловой частоты напряжения и тока.

Когда мгновенная мощность отрицательна, а это имеет место (см. рис. 1), когда u и i разных знаков, т.е. когда направления напряжения и тока в двухполюснике противоположны, энергия возвращается из двухполюсника источнику питания.

Такой возврат энергии источнику происходит за счет того, что энергия периодически запасается в магнитных и электрических полях соответственно индуктивных и емкостных элементов, входящих в состав двухполюсника. Энергия, отдаваемая источником двухполюснику в течение времени t равна .

Среднее за период значение мгновенной мощности называется активной мощностью .

Принимая во внимание, что , из (3) получим:

Активная мощность, потребляемая пассивным двухполюсником, не может быть отрицательной (иначе двухполюсник будет генерировать энергию), поэтому , т.е. на входе пассивного двухполюсника . Случай Р=0, теоретически возможен для двухполюсника, не имеющего активных сопротивлений, а содержащего только идеальные индуктивные и емкостные элементы.

1. Резистор (идеальное активное сопротивление).

Здесь напряжение и ток (см. рис. 2) совпадают по фазе , поэтому мощность всегда положительна, т.е. резистор потребляет активную мощность

2. Катушка индуктивности (идеальная индуктивность)

При идеальной индуктивности ток отстает от напряжения по фазе на . Поэтому в соответствии с (3) можно записать
.

Участок 1-2: энергия , запасаемая в магнитном поле катушки, нарастает.

Участок 2-3: энергия магнитного поля убывает, возвращаясь в источник.

3. Конденсатор (идеальная емкость)

Аналогичный характер имеют процессы и для идеальной емкости. Здесь . Поэтому из (3) вытекает, что . Таким образом, в катушке индуктивности и конденсаторе активная мощность не потребляется (Р=0), так как в них не происходит необратимого преобразования энергии в другие виды энергии. Здесь происходит только циркуляция энергии: электрическая энергия запасается в магнитном поле катушки или электрическом поле конденсатора на протяжении четверти периода, а на протяжении следующей четверти периода энергия вновь возвращается в сеть. В силу этого катушку индуктивности и конденсатор называют реактивными элементами, а их сопротивления ХL и ХС , в отличие от активного сопротивления R резистора, – реактивными.

Читайте также:  Как измерить ток в колебательном контуре

Интенсивность обмена энергии принято характеризовать наибольшим значением скорости поступления энергии в магнитное поле катушки или электрическое поле конденсатора, которое называется реактивной мощностью.

В общем случае выражение для реактивной мощности имеет вид:

Она положительна при отстающем токе (индуктивная нагрузка- ) и отрицательна при опережающем токе (емкостная нагрузка- ). Единицу мощности в применении к измерению реактивной мощности называют вольт-ампер реактивный (ВАр).

В частности для катушки индуктивности имеем:

Из последнего видно, что реактивная мощность для идеальной катушки индуктивности пропорциональна частоте и максимальному запасу энергии в катушке. Аналогично можно получить для идеального конденсатора:

Полная мощность

Помимо понятий активной и реактивной мощностей в электротехнике широко используется понятие полной мощности:

Активная, реактивная и полная мощности связаны следующим соотношением:

Отношение активной мощности к полной называют коэффициентом мощности. Из приведенных выше соотношений видно, что коэффициент мощности равен косинусу угла сдвига между током и напряжением. Итак,

Комплексная мощность

Активную, реактивную и полную мощности можно определить, пользуясь комплексными изображениями напряжения и тока. Пусть , а . Тогда комплекс полной мощности:

где — комплекс, сопряженный с комплексом .

Комплексной мощности можно поставить в соответствие треугольник мощностей (см. рис. 4). Рис. 4 соответствует (активно-индуктивная нагрузка), для которого имеем:

Применение статических конденсаторов для повышения cos

Как уже указывалось, реактивная мощность циркулирует между источником и потребителем. Реактивный ток, не совершая полезной работы, приводит к дополнительным потерям в силовом оборудовании и, следовательно, к завышению его установленной мощности. В этой связи понятно стремление к увеличению в силовых электрических цепях.

Следует указать, что подавляющее большинство потребителей (электродвигатели, электрические печи, другие различные устройства и приборы) как нагрузка носит активно-индуктивный характер.

Если параллельно такой нагрузке (см. рис. 5), включить конденсатор С, то общий ток , как видно из векторной диаграммы (рис. 6), приближается по фазе к напряжению, т.е. увеличивается, а общая величина тока (а следовательно, потери) уменьшается при постоянстве активной мощности . На этом основано применение конденсаторов для повышения .

Какую емкость С нужно взять, чтобы повысить коэффициент мощности от значения до значения ?

Разложим на активную и реактивную составляющие. Ток через конденсатор компенсирует часть реактивной составляющей тока нагрузки :

; (10)
; (11)
. (12)

Из (11) и (12) с учетом (10) имеем

но , откуда необходимая для повышения емкость:

Баланс мощностей

Баланс мощностей является следствием закона сохранения энергии и может служить критерием правильности расчета электрической цепи.

а) Постоянный ток

Для любой цепи постоянного тока выполняется соотношение:

Это уравнение представляет собой математическую форму записи баланса мощностей: суммарная мощность, генерируемая источниками электрической энергии, равна суммарной мощности, потребляемой в цепи.

Следует указать, что в левой части (14) слагаемые имеют знак “+”, поскольку активная мощность рассеивается на резисторах. В правой части (14) сумма слагаемых больше нуля, но отдельные члены здесь могут иметь знак “-”, что говорит о том, что соответствующие источники работают в режиме потребителей энергии (например, заряд аккумулятора).

б) Переменный ток.

Из закона сохранения энергии следует, что сумма всех отдаваемых активных мощностей равна сумме всех потребляемых активных мощностей, т.е.

В ТОЭ доказывается (вследствие достаточной громоздкости вывода это доказательство опустим), что баланс соблюдается и для реактивных мощностей:

, (16)

где знак “+” относится к индуктивным элементам , “-” – к емкостным .

Умножив (16) на “j” и сложив полученный результат с (15), придем к аналитическому выражению баланса мощностей в цепях синусоидального тока (без учета взаимной индуктивности):

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Что такое активная мощность?
  2. Что такое реактивная мощность, с какими элементами она связана?
  3. Что такое полная мощность?
  4. Почему необходимо стремиться к повышению коэффициента мощности ?
  5. Критерием чего служит баланс мощностей?
  6. К источнику с напряжением подключена активно-индуктивная нагрузка, ток в которой . Определить активную, реактивную и полную мощности.

Ответ: Р=250 Вт; Q=433 ВАр; S=500 ВА.

В ветви, содержащей последовательно соединенные резистор R и катушку индуктивности L, ток I=2 A. Напряжение на зажимах ветви U=100 B, а потребляемая мощность Р=120 Вт. Определить сопротивления R и XL элементов ветви.

Ответ: R=30 Ом; XL=40 Ом.

Мощность, потребляемая цепью, состоящей из параллельно соединенных конденсатора и резистора, Р=90 Вт. Ток в неразветвленной части цепи I1=5 A, а в ветви с резистором I2=4 A. Определить сопротивления R и XC элементов цепи.

Источник